服务的处理能力是有客观上限的。当请求速度超过服务的处理速度时,服务就会过载。
如果服务持续过载,会导致越来越多的请求积压,最终所有的请求都必须等待较长时间才能被处理,从而使整个服务处于瘫痪状态。
与之相对的,如果直接拒绝掉一部分请求,反而能够让服务能够"及时"处理更多的请求。对应的方法就是设置最大并发。
自适应限流能动态调整服务的最大并发,在保证服务不过载的前提下,让服务尽可能多的处理请求。
通常情况下要让服务不过载,只需在上线前进行压力测试,并通过little’s law计算出best_max_concurrency就可以了(并发度 = 时延 * QPS)。但在服务数量多,拓扑复杂,且处理能力会逐渐变化的局面下,使用固定的最大并发会带来巨大的测试工作量,很不方便。自适应限流就是为了解决这个问题。
使用自适应限流前建议做到:
客户端开启了重试功能。
服务端有多个节点。
这样当一个节点返回过载时,客户端可以向其他的节点发起重试,从而尽量不丢失流量。
目前只有method级别(即具体的rpc服务方法)支持自适应限流。如果要为某个method开启自适应限流,只需要将它的最大并发设置为"auto"即可。
// Set auto concurrency limiter for all methods
brpc::ServerOptions options;
options.method_max_concurrency = "auto";
// Set auto concurrency limiter for specific method
server.MaxConcurrencyOf("example.EchoService.Echo") = "auto";
concurrency(并发度): 同时处理的请求数,又被称为“并发度”。
max_concurrency:
设置的最大并发度。超过并发的请求会被拒绝(返回ELIMIT错误),在集群层面,client应重试到另一台server上去。
best_max_concurrency:
并发的物理含义是任务处理槽位,天然存在上限,这个上限就是best_max_concurrency,也就是最佳的最大并发度,一般推荐设置最大并发为该值,若max_concurrency设置的过大,则concurrency可能大于best_max_concurrency,任务将无法被及时处理而暂存在各种队列中排队,系统也会进入拥塞状态。若max_concurrency设置的过小,则concurrency总是会小于best_max_concurrency,限制系统达到本可以达到的更高吞吐。
noload_latency:
单纯处理任务的延时,不包括排队时间。另一种解释是低负载的延时。由于正确处理任务得经历必要的环节,其中会耗费cpu或等待下游返回,noload_latency是一个服务固有的属性,但可能随时间逐渐改变(由于内存碎片,压力变化,业务数据变化等因素)。
min_latency:
实际测定的latency中的较小值的ema,当concurrency不大于best_max_concurrency时,min_latency和noload_latency接近(可能轻微上升)。
peak_qps: 服务处理qps的上限。注意是处理或回复的qps而不是接收的qps。值取决于best_max_concurrency /
noload_latency,这两个量都是服务的固有属性,故peak_qps也是服务的固有属性,和拥塞状况无关,但可能随时间逐渐改变。
max_qps: 实际测定的qps中的较大值。由于qps具有上限,max_qps总是会小于peak_qps,不论拥塞与否。
- Little’s Law
在服务处于稳定状态时: concurrency = latency * qps。 这是自适应限流的理论基础。
当服务没有超载时,随着流量的上升,latency基本稳定(接近noload_latency),qps和concurrency呈线性关系一起上升。
当流量超过服务的peak_qps时,则concurrency和latency会一起上升,而qps会稳定在peak_qps。
假如一个服务的peak_qps和noload_latency都比较稳定,那么它的best_max_concurrency = noload_latency * peak_qps。
自适应限流就是要找到服务的noload_latency和peak_qps, 并将最大并发设置为靠近两者乘积的一个值。
自适应限流会不断的对请求进行采样,当采样窗口的样本数量足够时,会根据样本的平均延迟和服务当前的qps计算出下一个采样窗口的max_concurrency:
max_concurrency = max_qps * ((2+alpha) * min_latency - latency)
注意:当计算出来的 max_concurrency 和当前的 max_concurrency 的值不同时,每次对 max_concurrency 的调整的比例有一个上限,让 max_concurrency 的变化更为平滑。
当服务处于低负载时,min_latency约等于noload_latency,此时计算出来的max_concurrency会高于concurrency,但低于best_max_concurrency,给流量上涨留探索空间。而当服务过载时,服务的qps约等于max_qps,同时latency开始明显超过min_latency,此时max_concurrency则会接近concurrency,并通过定期衰减避免远离best_max_concurrency,保证服务不会过载。
估算noload_latency
服务的noload_latency并非是一成不变的,自适应限流必须能够正确的探测noload_latency的变化。当noload_latency下降时,是很容感知到的,因为这个时候latency也会下降。难点在于当latency上涨时,需要能够正确的辨别到底是服务过载了,还是noload_latency上涨了。
可能的方案有:
取最近一段时间的最小latency来近似noload_latency
取最近一段时间的latency的各种平均值来预测noload_latency
收集请求的平均排队等待时间,使用latency - queue_time作为noload_latency
每隔一段时间缩小max_concurrency,过一小段时间后以此时的latency作为noload_latency
方案1和方案2的问题在于:假如服务持续处于高负载,那么最近的所有latency都会高出noload_latency,从而使得算法估计的noload_latency不断升高。
方案3的问题在于,假如服务的性能瓶颈在下游服务,那么请求在服务本身的排队等待时间无法反应整体的负载情况。
方案4是最通用的,也经过了大量实验的考验。缩小max_concurrency和公式中的alpha存在关联。让我们做个假想实验,若latency极为稳定并都等于min_latency,那么公式简化为max_concurrency = max_qps * latency * (1 + alpha)。根据little’s law,qps最多为max_qps * (1 + alpha). alpha是qps的"探索空间",若alpha为0,则qps被锁定为max_qps,算法可能无法探索到peak_qps。但在qps已经达到peak_qps时,alpha会使延时上升(已拥塞),此时测定的min_latency会大于noload_latency,一轮轮下去最终会导致min_latency不收敛。定期降低max_concurrency就是阻止这个过程,并给min_latency下降提供"探索空间"。
减少重测时的流量损失
每隔一段时间,自适应限流算法都会缩小max_concurrency,并持续一段时间,然后将此时的latency作为服务的noload_latency,以处理noload_latency上涨了的情况。测量noload_latency时,必须让先服务处于低负载的状态,因此对max_concurrency的缩小是难以避免的。
由于max_concurrency < concurrency时,服务会拒绝掉所有的请求,限流算法将"排空所有的经历过排队等待的请求的时间" 设置为 latency * 2 ,以确保用于计算min_latency的样本绝大部分都是没有经过排队等待的。
由于服务的latency通常都不会太长,这种做法所带来的流量损失也很小。
应对抖动
即使服务自身没有过载,latency也会发生波动,根据Little’s Law,latency的波动会导致server的concurrency发生波动。
我们在设计自适应限流的计算公式时,考虑到了latency发生抖动的情况: 当latency与min_latency很接近时,根据计算公式会得到一个较高max_concurrency来适应concurrency的波动,从而尽可能的减少“误杀”。同时,随着latency的升高,max_concurrency会逐渐降低,以保护服务不会过载。
从另一个角度来说,当latency也开始升高时,通常意味着某处(不一定是服务本身,也有可能是下游服务)消耗了大量CPU资源,这个时候缩小max_concurrency也是合理的。
平滑处理
为了减少个别窗口的抖动对限流算法的影响,同时尽量降低计算开销,计算min_latency时会通过使用EMA来进行平滑处理:
if latency < min_latency:
min_latency = latency * ema_alpha + (1 - ema_alpha) * min_latency
else:
do_nothing
估算peak_qps
提高qps增长的速度
当服务启动时,由于服务本身需要进行一系列的初始化,tcp本身也有慢启动等一系列原因。服务在刚启动时的qps一定会很低。这就导致了服务启动时的max_concurrency也很低。而按照上面的计算公式,当max_concurrency很低的时候,预留给qps增长的冗余concurrency也很低(即:alpha * max_qps * min_latency)。从而会影响当流量增加时,服务max_concurrency的增加速度。
假如从启动到打满qps的时间过长,这期间会损失大量流量。在这里我们采取的措施有两个,
采样方面,一旦采到的请求数量足够多,直接提交当前采样窗口,而不是等待采样窗口的到时间了才提交
计算公式方面,当current_qps > 保存的max_qps时,直接进行更新,不进行平滑处理。
在进行了这两个处理之后,绝大部分情况下都能够在2秒左右将qps打满。
平滑处理
为了减少个别窗口的抖动对限流算法的影响,同时尽量降低计算开销,在计算max_qps时,会通过使用EMA来进行平滑处理:
if current_qps > max_qps:
max_qps = current_qps
else:
max_qps = current_qps * ema_alpha / 10 + (1 - ema_alpha / 10) * max_qps
将max_qps的ema参数置为min_latency的ema参数的十分之一的原因是: max_qps 下降了通常并不意味着极限qps也下降了。而min_latency下降了,通常意味着noload_latency确实下降了。
与netflix gradient算法的对比
netflix中的gradient算法公式为:max_concurrency = min_latency / latency * max_concurrency + queue_size。
其中latency是采样窗口的最小latency,min_latency是最近多个采样窗口的最小latency。min_latency / latency就是算法中的"梯度",当latency大于min_latency时,max_concurrency会逐渐减少;反之,max_concurrency会逐渐上升,从而让max_concurrency围绕在best_max_concurrency附近。
这个公式可以和本文的算法进行类比:
gradient算法中的latency和本算法的不同,前者的latency是最小值,后者是平均值。netflix的原意是最小值能更好地代表noload_latency,但实际上只要不对max_concurrency做定期衰减,不管最小值还是平均值都有可能不断上升使算法不收敛。最小值并不能带来额外的好处,反而会使算法更不稳定。
gradient算法中的max_concurrency / latency从概念上和qps有关联(根据little’s law),但可能严重脱节。比如在重测 min_latency前,若所有latency都小于min_latency,那么max_concurrency会不断下降甚至到0;但按照本算法,max_qps和min_latency仍然是稳定的,它们计算出的max_concurrency也不会剧烈变动。究其本质,gradient算法在迭代max_concurrency时,latency并不能代表实际并发为max_concurrency时的延时,两者是脱节的,所以max_concurrency / latency的实际物理含义不明,与qps可能差异甚大,最后导致了很大的偏差。
gradient算法的queue_size推荐为sqrt(max_concurrency),这是不合理的。netflix对queue_size的理解大概是代表各种不可控环节的缓存,比如socket里的,和max_concurrency存在一定的正向关系情有可原。但在我们的理解中,这部分queue_size作用微乎其微,没有或用常量即可。我们关注的queue_size是给concurrency上升留出的探索空间: max_concurrency的更新是有延迟的,在并发从低到高的增长过程中,queue_size的作用就是在max_concurrency更新前不限制qps上升。而当concurrency高时,服务可能已经过载了,queue_size就应该小一点,防止进一步恶化延时。这里的queue_size和并发是反向关系。
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "cl_test.pb.h"
DEFINE_int32(logoff_ms, 2000, "Maximum duration of server's LOGOFF state "
"(waiting for client to close connection before server stops)");
DEFINE_int32(server_bthread_concurrency, 4,
"Configuring the value of bthread_concurrency, For compute max qps, ");
DEFINE_int32(server_sync_sleep_us, 2500,
"Usleep time, each request will be executed once, For compute max qps");
// max qps = 1000 / 2.5 * 4
DEFINE_int32(control_server_port, 9000, "");
DEFINE_int32(echo_port, 9001, "TCP Port of echo server");
DEFINE_int32(cntl_port, 9000, "TCP Port of controller server");
DEFINE_string(case_file, "", "File path for test_cases");
DEFINE_int32(latency_change_interval_us, 50000, "Intervalt for server side changes the latency");
DEFINE_int32(server_max_concurrency, 0, "Echo Server's max_concurrency");
DEFINE_bool(use_usleep, false,
"EchoServer uses ::usleep or bthread_usleep to simulate latency "
"when processing requests");
bthread::TimerThread g_timer_thread;
int cast_func(void* arg) {
return *(int*)arg;
}
void DisplayStage(const test::Stage& stage) {
std::string type;
switch(stage.type()) {
case test::FLUCTUATE:
type = "Fluctuate";
break;
case test::SMOOTH:
type = "Smooth";
break;
default:
type = "Unknown";
}
std::stringstream ss;
ss
<< "Stage:[" << stage.lower_bound() << ':'
<< stage.upper_bound() << "]"
<< " , Type:" << type;
LOG(INFO) << ss.str();
}
butil::atomic<int> cnt(0);
butil::atomic<int> atomic_sleep_time(0);
bvar::PassiveStatus<int> atomic_sleep_time_bvar(cast_func, &atomic_sleep_time);
namespace bthread {
DECLARE_int32(bthread_concurrency);
}
void TimerTask(void* data);
class EchoServiceImpl : public test::EchoService {
public:
EchoServiceImpl()
: _stage_index(0)
, _running_case(false) {
};
virtual ~EchoServiceImpl() {};
void SetTestCase(const test::TestCase& test_case) {
_test_case = test_case;
_next_stage_start = _test_case.latency_stage_list(0).duration_sec() +
butil::gettimeofday_s();
_stage_index = 0;
_running_case = false;
DisplayStage(_test_case.latency_stage_list(_stage_index));
}
void StartTestCase() {
CHECK(!_running_case);
_running_case = true;
UpdateLatency();
}
void StopTestCase() {
_running_case = false;
}
void UpdateLatency() {
if (!_running_case) {
return;
}
ComputeLatency();
g_timer_thread.schedule(TimerTask, (void*)this,
butil::microseconds_from_now(FLAGS_latency_change_interval_us));
}
virtual void Echo(google::protobuf::RpcController* cntl_base,
const test::NotifyRequest* request,
test::NotifyResponse* response,
google::protobuf::Closure* done) {
brpc::ClosureGuard done_guard(done);
response->set_message("hello");
::usleep(FLAGS_server_sync_sleep_us);
if (FLAGS_use_usleep) {
::usleep(_latency.load(butil::memory_order_relaxed));
} else {
bthread_usleep(_latency.load(butil::memory_order_relaxed));
}
}
void ComputeLatency() {
if (_stage_index < _test_case.latency_stage_list_size() &&
butil::gettimeofday_s() > _next_stage_start) {
++_stage_index;
if (_stage_index < _test_case.latency_stage_list_size()) {
_next_stage_start += _test_case.latency_stage_list(_stage_index).duration_sec();
DisplayStage(_test_case.latency_stage_list(_stage_index));
}
}
if (_stage_index == _test_case.latency_stage_list_size()) {
const test::Stage& latency_stage =
_test_case.latency_stage_list(_stage_index - 1);
if (latency_stage.type() == test::ChangeType::FLUCTUATE) {
_latency.store((latency_stage.lower_bound() + latency_stage.upper_bound()) / 2,
butil::memory_order_relaxed);
} else if (latency_stage.type() == test::ChangeType::SMOOTH) {
_latency.store(latency_stage.upper_bound(), butil::memory_order_relaxed);
}
return;
}
const test::Stage& latency_stage = _test_case.latency_stage_list(_stage_index);
const int lower_bound = latency_stage.lower_bound();
const int upper_bound = latency_stage.upper_bound();
if (latency_stage.type() == test::FLUCTUATE) {
_latency.store(butil::fast_rand_less_than(upper_bound - lower_bound) + lower_bound,
butil::memory_order_relaxed);
} else if (latency_stage.type() == test::SMOOTH) {
int latency = lower_bound + (upper_bound - lower_bound) /
double(latency_stage.duration_sec()) *
(latency_stage.duration_sec() - _next_stage_start +
butil::gettimeofday_s());
_latency.store(latency, butil::memory_order_relaxed);
} else {
LOG(FATAL) << "Wrong Type:" << latency_stage.type();
}
}
private:
int _stage_index;
int _next_stage_start;
butil::atomic<int> _latency;
test::TestCase _test_case;
bool _running_case;
};
void TimerTask(void* data) {
EchoServiceImpl* echo_service = (EchoServiceImpl*)data;
echo_service->UpdateLatency();
}
class ControlServiceImpl : public test::ControlService {
public:
ControlServiceImpl()
: _case_index(0) {
LoadCaseSet(FLAGS_case_file);
_echo_service = new EchoServiceImpl;
if (_server.AddService(_echo_service,
brpc::SERVER_OWNS_SERVICE) != 0) {
LOG(FATAL) << "Fail to add service";
}
g_timer_thread.start(NULL);
}
virtual ~ControlServiceImpl() {
_echo_service->StopTestCase();
g_timer_thread.stop_and_join();
};
virtual void Notify(google::protobuf::RpcController* cntl_base,
const test::NotifyRequest* request,
test::NotifyResponse* response,
google::protobuf::Closure* done) {
brpc::ClosureGuard done_guard(done);
const std::string& message = request->message();
LOG(INFO) << message;
if (message == "ResetCaseSet") {
_server.Stop(0);
_server.Join();
_echo_service->StopTestCase();
LoadCaseSet(FLAGS_case_file);
_case_index = 0;
response->set_message("CaseSetReset");
} else if (message == "StartCase") {
CHECK(!_server.IsRunning()) << "Continuous StartCase";
const test::TestCase& test_case = _case_set.test_case(_case_index++);
_echo_service->SetTestCase(test_case);
brpc::ServerOptions options;
options.max_concurrency = FLAGS_server_max_concurrency;
_server.MaxConcurrencyOf("test.EchoService.Echo") = test_case.max_concurrency();
_server.Start(FLAGS_echo_port, &options);
_echo_service->StartTestCase();
response->set_message("CaseStarted");
} else if (message == "StopCase") {
CHECK(_server.IsRunning()) << "Continuous StopCase";
_server.Stop(0);
_server.Join();
_echo_service->StopTestCase();
response->set_message("CaseStopped");
} else {
LOG(FATAL) << "Invalid message:" << message;
response->set_message("Invalid Cntl Message");
}
}
private:
void LoadCaseSet(const std::string& file_path) {
std::ifstream ifs(file_path.c_str(), std::ios::in);
if (!ifs) {
LOG(FATAL) << "Fail to open case set file: " << file_path;
}
std::string case_set_json((std::istreambuf_iterator<char>(ifs)),
std::istreambuf_iterator<char>());
test::TestCaseSet case_set;
std::string err;
if (!json2pb::JsonToProtoMessage(case_set_json, &case_set, &err)) {
LOG(FATAL)
<< "Fail to trans case_set from json to protobuf message: "
<< err;
}
_case_set = case_set;
ifs.close();
}
brpc::Server _server;
EchoServiceImpl* _echo_service;
test::TestCaseSet _case_set;
int _case_index;
};
int main(int argc, char* argv[]) {
// Parse gflags. We recommend you to use gflags as well.
GFLAGS_NS::ParseCommandLineFlags(&argc, &argv, true);
bthread::FLAGS_bthread_concurrency= FLAGS_server_bthread_concurrency;
brpc::Server server;
ControlServiceImpl control_service_impl;
if (server.AddService(&control_service_impl,
brpc::SERVER_DOESNT_OWN_SERVICE) != 0) {
LOG(ERROR) << "Fail to add service";
return -1;
}
if (server.Start(FLAGS_cntl_port, NULL) != 0) {
LOG(ERROR) << "Fail to start EchoServer";
return -1;
}
server.RunUntilAskedToQuit();
return 0;
}
#include
#include
#include
#include
#include
#include
#include
#include
#include "cl_test.pb.h"
DEFINE_string(protocol, "baidu_std", "Protocol type. Defined in src/brpc/options.proto");
DEFINE_string(connection_type, "", "Connection type. Available values: single, pooled, short");
DEFINE_string(cntl_server, "0.0.0.0:9000", "IP Address of server");
DEFINE_string(echo_server, "0.0.0.0:9001", "IP Address of server");
DEFINE_int32(timeout_ms, 3000, "RPC timeout in milliseconds");
DEFINE_int32(max_retry, 0, "Max retries(not including the first RPC)");
DEFINE_int32(case_interval, 20, "Intervals for different test cases");
DEFINE_int32(client_qps_change_interval_us, 50000,
"The interval for client changes the sending speed");
DEFINE_string(case_file, "", "File path for test_cases");
void DisplayStage(const test::Stage& stage) {
std::string type;
switch(stage.type()) {
case test::FLUCTUATE:
type = "Fluctuate";
break;
case test::SMOOTH:
type = "Smooth";
break;
default:
type = "Unknown";
}
std::stringstream ss;
ss
<< "Stage:[" << stage.lower_bound() << ':'
<< stage.upper_bound() << "]"
<< " , Type:" << type;
LOG(INFO) << ss.str();
}
uint32_t cast_func(void* arg) {
return *(uint32_t*)arg;
}
butil::atomic<uint32_t> g_timeout(0);
butil::atomic<uint32_t> g_error(0);
butil::atomic<uint32_t> g_succ(0);
bvar::PassiveStatus<uint32_t> g_timeout_bvar(cast_func, &g_timeout);
bvar::PassiveStatus<uint32_t> g_error_bvar(cast_func, &g_error);
bvar::PassiveStatus<uint32_t> g_succ_bvar(cast_func, &g_succ);
bvar::LatencyRecorder g_latency_rec;
void LoadCaseSet(test::TestCaseSet* case_set, const std::string& file_path) {
std::ifstream ifs(file_path.c_str(), std::ios::in);
if (!ifs) {
LOG(FATAL) << "Fail to open case set file: " << file_path;
}
std::string case_set_json((std::istreambuf_iterator<char>(ifs)),
std::istreambuf_iterator<char>());
std::string err;
if (!json2pb::JsonToProtoMessage(case_set_json, case_set, &err)) {
LOG(FATAL)
<< "Fail to trans case_set from json to protobuf message: "
<< err;
}
}
void HandleEchoResponse(
brpc::Controller* cntl,
test::NotifyResponse* response) {
// std::unique_ptr makes sure cntl/response will be deleted before returning.
std::unique_ptr<brpc::Controller> cntl_guard(cntl);
std::unique_ptr<test::NotifyResponse> response_guard(response);
if (cntl->Failed() && cntl->ErrorCode() == brpc::ERPCTIMEDOUT) {
g_timeout.fetch_add(1, butil::memory_order_relaxed);
LOG_EVERY_N(INFO, 1000) << cntl->ErrorText();
} else if (cntl->Failed()) {
g_error.fetch_add(1, butil::memory_order_relaxed);
LOG_EVERY_N(INFO, 1000) << cntl->ErrorText();
} else {
g_succ.fetch_add(1, butil::memory_order_relaxed);
g_latency_rec << cntl->latency_us();
}
}
void Expose() {
g_timeout_bvar.expose_as("cl", "timeout");
g_error_bvar.expose_as("cl", "failed");
g_succ_bvar.expose_as("cl", "succ");
g_latency_rec.expose("cl");
}
struct TestCaseContext {
TestCaseContext(const test::TestCase& tc)
: running(true)
, stage_index(0)
, test_case(tc)
, next_stage_sec(test_case.qps_stage_list(0).duration_sec() +
butil::gettimeofday_s()) {
DisplayStage(test_case.qps_stage_list(stage_index));
Update();
}
bool Update() {
if (butil::gettimeofday_s() >= next_stage_sec) {
++stage_index;
if (stage_index < test_case.qps_stage_list_size()) {
next_stage_sec += test_case.qps_stage_list(stage_index).duration_sec();
DisplayStage(test_case.qps_stage_list(stage_index));
} else {
return false;
}
}
int qps = 0;
const test::Stage& qps_stage = test_case.qps_stage_list(stage_index);
const int lower_bound = qps_stage.lower_bound();
const int upper_bound = qps_stage.upper_bound();
if (qps_stage.type() == test::FLUCTUATE) {
qps = butil::fast_rand_less_than(upper_bound - lower_bound) + lower_bound;
} else if (qps_stage.type() == test::SMOOTH) {
qps = lower_bound + (upper_bound - lower_bound) /
double(qps_stage.duration_sec()) * (qps_stage.duration_sec() - next_stage_sec
+ butil::gettimeofday_s());
}
interval_us.store(1.0 / qps * 1000000, butil::memory_order_relaxed);
return true;
}
butil::atomic<bool> running;
butil::atomic<int64_t> interval_us;
int stage_index;
const test::TestCase test_case;
int next_stage_sec;
};
void RunUpdateTask(void* data) {
TestCaseContext* context = (TestCaseContext*)data;
bool should_continue = context->Update();
if (should_continue) {
bthread::get_global_timer_thread()->schedule(RunUpdateTask, data,
butil::microseconds_from_now(FLAGS_client_qps_change_interval_us));
} else {
context->running.store(false, butil::memory_order_release);
}
}
void RunCase(test::ControlService_Stub &cntl_stub,
const test::TestCase& test_case) {
LOG(INFO) << "Running case:`" << test_case.case_name() << '\'';
brpc::Channel channel;
brpc::ChannelOptions options;
options.protocol = FLAGS_protocol;
options.connection_type = FLAGS_connection_type;
options.timeout_ms = FLAGS_timeout_ms;
options.max_retry = FLAGS_max_retry;
if (channel.Init(FLAGS_echo_server.c_str(), &options) != 0) {
LOG(FATAL) << "Fail to initialize channel";
}
test::EchoService_Stub echo_stub(&channel);
test::NotifyRequest cntl_req;
test::NotifyResponse cntl_rsp;
brpc::Controller cntl;
cntl_req.set_message("StartCase");
cntl_stub.Notify(&cntl, &cntl_req, &cntl_rsp, NULL);
CHECK(!cntl.Failed()) << "control failed";
TestCaseContext context(test_case);
bthread::get_global_timer_thread()->schedule(RunUpdateTask, &context,
butil::microseconds_from_now(FLAGS_client_qps_change_interval_us));
while (context.running.load(butil::memory_order_acquire)) {
test::NotifyRequest echo_req;
echo_req.set_message("hello");
brpc::Controller* echo_cntl = new brpc::Controller;
test::NotifyResponse* echo_rsp = new test::NotifyResponse;
google::protobuf::Closure* done = brpc::NewCallback(
&HandleEchoResponse, echo_cntl, echo_rsp);
echo_stub.Echo(echo_cntl, &echo_req, echo_rsp, done);
::usleep(context.interval_us.load(butil::memory_order_relaxed));
}
LOG(INFO) << "Waiting to stop case: `" << test_case.case_name() << '\'';
::sleep(FLAGS_case_interval);
cntl.Reset();
cntl_req.set_message("StopCase");
cntl_stub.Notify(&cntl, &cntl_req, &cntl_rsp, NULL);
CHECK(!cntl.Failed()) << "control failed";
LOG(INFO) << "Case `" << test_case.case_name() << "' finshed:";
}
int main(int argc, char* argv[]) {
// Parse gflags. We recommend you to use gflags as well.
GFLAGS_NS::ParseCommandLineFlags(&argc, &argv, true);
Expose();
brpc::Channel channel;
brpc::ChannelOptions options;
options.protocol = FLAGS_protocol;
options.connection_type = FLAGS_connection_type;
options.timeout_ms = FLAGS_timeout_ms;
if (channel.Init(FLAGS_cntl_server.c_str(), &options) != 0) {
LOG(ERROR) << "Fail to initialize channel";
return -1;
}
test::ControlService_Stub cntl_stub(&channel);
test::TestCaseSet case_set;
LoadCaseSet(&case_set, FLAGS_case_file);
brpc::Controller cntl;
test::NotifyRequest cntl_req;
test::NotifyResponse cntl_rsp;
cntl_req.set_message("ResetCaseSet");
cntl_stub.Notify(&cntl, &cntl_req, &cntl_rsp, NULL);
CHECK(!cntl.Failed()) << "Cntl Failed";
for (int i = 0; i < case_set.test_case_size(); ++i) {
RunCase(cntl_stub, case_set.test_case(i));
}
LOG(INFO) << "EchoClient is going to quit";
return 0;
}
syntax="proto2";
package test;
option cc_generic_services = true;
message NotifyRequest {
required string message = 1;
};
message NotifyResponse {
required string message = 1;
};
enum ChangeType {
FLUCTUATE = 1; // Fluctuating between upper and lower bound
SMOOTH = 2; // Smoothly rising from the lower bound to the upper bound
}
message Stage {
required int32 lower_bound = 1;
required int32 upper_bound = 2;
required int32 duration_sec = 3;
required ChangeType type = 4;
}
message TestCase {
required string case_name = 1;
required string max_concurrency = 2;
repeated Stage qps_stage_list = 3;
repeated Stage latency_stage_list = 4;
}
message TestCaseSet {
repeated TestCase test_case = 1;
}
service ControlService {
rpc Notify(NotifyRequest) returns (NotifyResponse);
}
service EchoService {
rpc Echo(NotifyRequest) returns (NotifyResponse);
};