- 【CodeBlocks】搭建OpenCV环境指南
万众珩
【CodeBlocks】搭建OpenCV环境指南CodeBlocks搭建OpenCV环境项目地址:https://gitcode.com/Resource-Bundle-Collection/e1e1a本资源提供了详细的教程,帮助您在CodeBlocks集成开发环境中顺利搭建OpenCV环境。OpenCV是一个开源的计算机视觉和机器学习软件库,广泛应用于图像处理和视频分析领域。通过这篇指南,即便是
- 在Linux环境下安装和使用Pyenv:详细指南
I'mAlex
Python三方库#Pythonlinux运维服务器pythonpyenv
Pyenv是一个用于管理多个Python版本的强大工具,特别适合在Linux环境下使用。本文将详细介绍如何在Linux系统上安装和使用Pyenv,以便更好地管理Python开发环境。博主简介:现任阿里巴巴嵌入式技术专家,15年工作经验,深耕嵌入式+人工智能领域,精通嵌入式领域开发、技术管理、简历招聘面试。CSDN优质创作者,提供产品测评、学习辅导、简历面试辅导、毕设辅导、项目开发、C/C++/Ja
- 注意力机制(Attention Mechanism)详细分类与介绍
Jason_Orton
分类数据挖掘人工智能
注意力机制(AttentionMechanism)是近年来在深度学习中非常流行的一种技术,特别是在自然语言处理(NLP)、计算机视觉等任务中,具有显著的效果。它的核心思想是模仿人类在处理信息时的注意力分配方式,根据不同部分的重要性给予不同的关注程度。1.注意力机制的背景与动机在传统的深度学习模型(如RNN、CNN等)中,信息处理通常是按照固定的规则和结构进行的,模型对输入的各个部分给予相同的关注。
- HTTP 协议
星竹
服务器http网络协议服务器
项目:csdn:https://blog.csdn.net/2303_76953932/article/details/142704176?spm=1001.2014.3001.5501halo:https://xingzhu.top/archives/webfu-wu-qi-xiao-xiang-mu-linux-c-epoll说明:参考学习:https://www.bilibili.com/v
- 图神经网络:拓扑数据分析的新时代
Jason_Orton
神经网络数据分析人工智能
随着图数据的广泛应用,图神经网络(GraphNeuralNetwork,GNN)作为一种强大的深度学习工具,逐渐成为机器学习领域中的一颗新星。图数据在许多现实世界问题中无处不在,诸如社交网络、交通网络、分子结构、推荐系统等都可以被建模为图结构。图神经网络通过直接处理图结构数据,能够更好地捕捉节点之间的关系信息,从而在众多任务中展现出了优异的性能。本文将深入探讨图神经网络的基本原理、常见的算法、应用
- 解锁C++学习密码,从入门到精通不是梦
大雨淅淅
C++开发c++学习开发语言
目录一、为什么选择C++二、新手入门:夯实基础(一)前置知识储备(二)C++基础语法学习(三)开发环境搭建三、进阶提升:深入学习(一)C++标准库探秘(二)面向对象编程(OOP)(三)泛型编程与模板四、高阶拓展:掌握高级特性(一)内存管理与指针(二)异常处理(三)多线程编程五、实战演练:项目实践(一)小型项目实践(二)参与开源项目六、持续学习:保持进步(一)阅读优秀代码(二)关注行业动态(三)参加
- 鸿蒙Harmony开发实战(Input Kit)输入设备开发实践
我很英俊 小名男男
OpenHarmony鸿蒙开发HarmonyOSharmonyos华为前端开发语言鸿蒙移动开发鸿蒙系统
鸿蒙开发实战往期文章必看:HarmonyOSNEXT应用开发性能实践总结一分钟了解”纯血版!鸿蒙HarmonyOSNext应用开发!“非常详细的”鸿蒙HarmonyOSNext应用开发学习路线!(从零基础入门到精通)<
- 智算中心的核心硬件是什么?
Imagination官方博客
本文来源:游方AI智算中心,作为人工智能时代的关键基础设施,其核心硬件的构成与性能直接影响着智能计算的效率与质量。以下是对智算中心核心硬件的详细阐述:一、AI芯片AI芯片是专门为加速人工智能计算而设计的硬件,能够与各种AI算法协同工作,满足对算力的极高需求。当前主流的AI加速计算芯片包括:1、GPU(图形处理器)GPU是智算中心的算力担当,其强大的并行计算能力使其在深度学习领域大放异彩。GPU芯片
- 2025,AI变现有哪些机遇与挑战?
Imagination官方博客
人工智能
大模型的能力边界在不断拓宽,主流云端大模型普遍具备了多模态推理能力。技术路线上,也不再局限于算力堆叠,而是探索强化学习、符号推理、类脑计算等新路径。并且,投入更小、更垂直的小模型涌现,为特定领域的应用提供了更高效的解决方案。与此同时,我国大模型领域仍然存在多方面痛点,例如:云端训练成本高、高端算力存在“卡脖子”风险、优质数据匮乏、人才缺口、AI算法开源生态仍需强化、数据安全和隐私问题等等,仍是市场
- nestjs+mysql+prisma + swagger项目搭建
哆啦咪唏
mysqljavascriptprismanestjs
nestjs学习(一)项目地址1.基础操作安装nestyarnadd-g@nestjs/cli创建项目nestnewproject-name启动服务器yarnrunstartyarnstart:dev监听文件变化,自动重启服务使用nest-cli快速创建service/controller,会自动引入Module中nestg[文件类型][文件名][文件目录(src目录下)]详细过程可以参考nest
- 从0-1学习Mysql第七章: 分区与分库分表
一小路一
掌握Go语言:编程世界的进阶钥匙学习mysql数据库后端面试
第七章:分区与分库分表在大数据时代,单个数据库或表往往难以应对海量数据带来的存储、查询和维护压力。分区、分表和分库分表技术正是在这种背景下应运而生。它们通过将数据进行逻辑或物理拆分,实现数据管理的灵活性和系统性能的优化。1.分区表的概念与使用场景1.1什么是分区表?分区表是将一个大表按照某种规则(如范围、列表、哈希等)划分为多个逻辑子表的技术。虽然物理上数据仍存储在同一张表内,但查询时数据库可以根
- 【创作话题】Wireshark插件开发实用技巧分享
热爱分享的博士僧
wireshark测试工具网络
开发Wireshark插件能够极大地扩展Wireshark的功能,使其能够解析和分析特定协议的数据包。以下是一些实用技巧,帮助您更高效地进行Wireshark插件开发:1.熟悉Lua脚本语言Wireshark支持使用Lua脚本语言来编写插件。Lua是一种轻量级的脚本语言,易于学习且功能强大,非常适合用于快速原型设计和开发Wireshark插件。掌握Lua的基本语法、数据结构(如表)以及如何在Lua
- Go Web 项目实战:构建 RESTful API、命令行工具及应用部署
一小路一
掌握Go语言:编程世界的进阶钥匙golang面试后端开发语言
GoWeb项目实战:构建RESTfulAPI、命令行工具及应用部署Go语言因其简洁高效、并发支持强大等特点,已经成为了后端开发的热门选择之一。本篇文章将通过实战案例带领你学习如何使用Go构建一个简单的RESTfulAPI,开发命令行工具,并展示如何使用Docker部署Go应用。通过这些实战内容,你可以更好地理解Go在实际开发中的应用。1.构建一个简单的RESTfulAPIRESTfulAPI是基于
- AI之DeepSeek
james二次元
AI人工智能AIDeepSeek
DeepSeek是一个开源的基于深度学习的搜索引擎,用于在大规模数据中进行高效的内容检索和相似度搜索。它利用深度学习技术,特别是嵌入(embedding)技术,以改进传统搜索引擎中基于关键词的匹配方式,能够对复杂的查询和内容进行更精确和智能的理解。DeepSeek主要侧重于基于语义的搜索,通过将数据(例如文本、图像、音频等)转换为向量表示,来实现更为精准的相似度搜索。它的应用场景包括但不限于自然语
- Spark之PySpark
james二次元
大数据SparkPythonPySpark
PySpark是ApacheSpark的PythonAPI,它允许开发者使用Python编程语言进行大规模数据处理和分析。ApacheSpark是一个快速、通用、可扩展的大数据处理引擎,支持批处理、流处理、机器学习、图计算等多种数据处理模式。PySpark使得Python开发者能够利用Spark强大的分布式计算能力,处理大数据集,并执行高效的并行计算。一、PySpark核心概念1.RDD(弹性分布
- PyQT开发的简易有道词典
wangyiyan212
pythonpythonGUI有道翻译json
最近学习PyQt,写了一个比较简单的字典,使用了有道翻译OpenAPI,下面是代码:#-*-coding:utf-8-*-__author__='Cullen'importurllibimportjsonimporturllib2fromPyQt4importQtGui,QtCoreimportsysAPI_KEY='1349304933'KEYFROM='cullen'classMyDict(Q
- [AI] [ComfyUI]理解ComyUI的基本原理及其图像生成技术
技术小甜甜
AI探索者人工智能AI作画
ComyUI作为一种图像生成框架,其背后的核心技术基于潜在空间的概念,并通过各种深度学习模块实现高效的图像生成与本地部署。本文将详细探讨ComyUI的基本原理,涵盖其在图像生成中的关键概念,包括潜在空间、VAE模块、噪声处理以及CLIP编码器节点的作用。1.潜在空间的存在与生成效率什么是潜在空间?潜在空间(LatentSpace)是指数据压缩后的低维空间。在图像生成中,潜在空间的引入极大地提高了生
- Vue学习教程-16html标签元素绑定事件
番茄番茄君
vue.js学习前端
文章目录前言一、表单数据绑定事件二、多媒体元素绑定1.图片img和视频元素video三、容器元素绑定事件前言在Vue中,你可以通过v-on指令(或在Vue2.x中简写为@)来绑定事件。这种方式允许你监听DOM事件,并在触发时执行一些JavaScript代码。常见的元素主要是表单数据元素、多媒体元素和容器元素。一、表单数据绑定事件常见的表单数据元素1.文本输入框元素3.多选框元素4.下拉框元素5.按
- 作为一名测试工程师如何学习Kubernetes(k8s)技能
网络安全小宇哥
学习kubernetes容器计算机网络web安全安全dubbo
前言Kubernetes(K8s)作为云原生时代的关键技术之一,对于运维工程师、开发工程师以及测试工程师来说,都是一门需要掌握的重要技术。作为一名软件测试工程师,学习Kubernetes是一个有助于提升自动化测试、容器化测试以及云原生应用测试能力的重要过程。以下是一个系统性的学习路径和建议:一、了解基础概念1)容器技术:学习Docker等容器技术的基础知识,了解容器的基本概念、镜像、容器运行与管理
- 自编码器(Autoencoders)
路野yue
机器学习人工智能深度学习
自编码器(Autoencoders):自编码器由编码器和解码器组成,编码器将输入数据压缩为低维表示,解码器将其还原为原始数据。通过训练,自编码器能够学习数据的有效表示,常用于降维和特征提取。相比于独立模型,它的输入输出更灵活,且可以在输入完成后在完成解码。1.基本结构自编码器由两部分组成:编码器(Encoder):将输入数据压缩为低维表示(编码)。解码器(Decoder):从编码中重建原始数据。2
- 今天写一篇新手向,如何快速写出SpringMVC架构
小巫程序Demo日记
Spring深层了解架构springbootjava
小巫程序Demo日记:如何快速掌握MVC架构思想一、MVC是什么?在学习SpringMVC之前,我们首先需要弄明白MVC是什么。MVC是一种设计模式,全称是Model-View-Controller(模型-视图-控制器),它将应用程序分成三个主要部分,彼此分工明确:Model(模型)作用:负责管理数据和业务逻辑。职责:存储数据(比如数据库中的用户信息)、处理数据的规则(比如验证输入是否合法)、以及
- 学影刀有什么好处?为什么学习影刀?
sc0_joker
学习rpa
引言:影刀RPA,学了有用吗?公司在推广用这个软件,在让大家学,学得好可以转岗RPA专员,请问一下大家值不值得花时间学?我个人觉得如果有时间的话还是学,后期对你的帮助是巨大的我作为一名数字营销专业人士,每周需要处理大量的数据。去年,我开始寻找能够自动化Windows软件操作的工具,以提高工作效率。在尝试了多种RPA工具后,我最终选择了影刀RPA,并开始了我的自动化之旅。在寻找自动化工具的过程中,我
- 你好,我是冴羽,我写了一套《前端大佬成长之路》
你好,我是冴羽。这么正式的开头说明我有了一个大动作。是的,我创建了自己的知识星球:“冴羽·前端大佬成长之路”。重点一:新的一年,我会在知识星球更新一套“前端大佬成长之路”的课程。包含目标规划篇、学习方法篇、前端学习篇、个人管理篇、职场发展篇、面试技巧篇、健康养生篇共7大篇章、40节文章。总结了我近十年的工作生活经验,让大家少走一些弯路,节省一些时间。重点二:但是帮助你全面成长,一套课程是不够的,必
- 补充:文件上传、下载传输给前端之直接传递图片二进制数据:网络中的图片、音频、视频等非字符数据的传输
JU HE
JavaWeb开发基础网络音视频
文章目录1Base64编码传递图片、视频二进制数据2后端直接传递图片二进制数据案例2.1后端:创建专用DTO(推荐方案)2.2前端处理建议1Base64编码传递图片、视频二进制数据前面我们在学习Java的IO流的时候讲过字节流和字符流。字符的传输:前后端字符的传输JSON中就是直接传字符就可以了讲一下实际中的变换过程:字符流中字符的传输是参考博客字符串—>(编码方式对应起来)字符数组—>二进制数据
- 深度学习重要论文阅读笔记 ResNet (2025.2.26)
北岛寒沫
逐界星辰2025计算机科研深度学习论文阅读笔记
文章目录问题背景数据预处理神经网络模型模型性能知识点积累英语单词积累问题背景随着神经网络变得更深(层数变多),模型的训练过程也会变得更加困难。当神经网络的深度增加,就会出现梯度消失和梯度下降现象,妨碍模型的收敛。不过,这种情况可以通过归一化的模型初始化和中间的归一化层基本解决。但是,尽管在增加了归一化技术的情况下很深的神经网络可以收敛,又出现了另外一个问题,即随着模型深度的增加,模型的准确率反而下
- 机器学习——无监督学习(k-means算法)
张起灵ovo
机器学习入门机器学习算法学习
1、K-Means聚类算法K表示超参数个数,如分成几个类别,K值就取多少。若无需求,可使用网格搜索找到最佳的K。步骤:1、随机设置K个特征空间内的点作为初始聚类中心;2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记种类;3、接着对标记的聚类中心之后,重新计算出每个聚类的中心点(平均值);4、如果计算得出的新中心点与原中心点一样,那么结束,否则执行第二步。means表
- pandas series 相加_Numpy和Pandas教程
weixin_39778393
pandasseries相加
Pandas简介-python数据分析library-基于numpy(对ndarray的操作)-有一种用python做Excel/SQL/R的感觉-为什么要学习pandas?-pandas和机器学习的关系,数据预处理,featureengineering。-pandas的DataFrame结构和大家在大数据部分见到的spark中的DataFrame非常类似。目录-numpy速成-Series-Da
- 如果你干了1年多前端,接下来的路该怎么走?
前端后端程序员
我知道在很多中大型公司,其实有好多领导前辈、以及师傅会给那些校招生,以及应届生规划一定的学习成长路线。有些皮于表面,有些醍醐灌顶。其实如果职场上有那么一个领路人,个人的成长是飞速的。我入职了一家新单位,这家单位的没有太多规范,没有太多的组件封装积累,还会考核每周的代码量,我发现有些阶段代码量(测试阶段、需求阶段等)不够的时候大家都是往项目中塞没用的代码,还有些同学会复制公共组件的代码进自己的模块充
- 大语言模型原理与工程实践:Transformer 大语言模型预训练
AI天才研究院
计算ChatGPTtransformer
大语言模型原理与工程实践:Transformer大语言模型预训练关键词:大语言模型、预训练、Transformer、自监督学习、计算资源、数据处理文章目录大语言模型原理与工程实践:Transformer大语言模型预训练1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系2.1大语言模型(LargeLanguageModels,LLMs)2.2预训练(Pre-tr
- 大模型核心技术原理: Transformer架构详解!
大模型猫叔
transformer架构深度学习人工智能学习机器学习算法
在大模型发展历程中,有两个比较重要点:第一,Transformer架构。它是模型的底座,但Transformer不等于大模型,但大模型的架构可以基于Transformer;第二,GPT。严格意义上讲,GPT可能不算是一个模型,更像是一种预训练范式,它本身模型架构是基于Transformer,但GPT引入了“预测下一个词”的任务,即不断通过前文内容预测下一个词。之后,在大量的数据上进行学习才达到大模
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep