volatile详解

volatile详解

  • 一、内存语义
  • 二、volatile的可见性
  • 三、volatile无法保证原子性
  • 四、硬件层的内存屏障(Memory Barrier)
    • 1、JVM中提供了四类内存屏障指令
    • 2、内存屏障的作用
  • 五、volatile禁止重排优化
  • 六、volatile内存语义

一、内存语义

volatile是Java虚拟机提供的轻量级的同步机制

volatile关键字有如下两个作用:
(1)保证被volatile修饰的共享变量对所有线程总数可见的,也就是当一个线程修改了一个被volatile修饰共享变量的值,新值总是可以被其他线程立即得知。
(2)禁止指令重排序优化

由此可以看出,volatile主要是跟可见性问题和有序性问题有关

二、volatile的可见性

关于volatile的可见性作用,我们必须意识到被volatile修饰的变量对所有线程总数立即可见的,对volatile变量的所有写操作总是能立刻反应到其他线程中。

三、volatile无法保证原子性

//示例
public class VolatileVisibility {
    public static volatile int i =0;
    public static void increase(){
        i++;
    }
}

在并发场景下,i变量的任何改变都会立马反应到其他线程中,但是如此存在多条线程同时调用increase()方法的话,就会出现线程安全问题,毕竟i++;操作并不具备原子性,该操作是先读取值,然后写回一个新值,相当于原来的值加上1,分两步完成,如果第二个线程在第一个线程读取旧值和写回新值期间读取i的域值,那么第二个线程就会与第一个线程一起看到同一个值,并执行相同值的加1操作,这也就造成了线程安全失败,因此对于increase方法必须使用synchronized修饰,以便保证线程安全,需要注意的是一旦使用synchronized修饰方法后,由于synchronized本身也具备与volatile相同的特性,即可见性,因此在这样种情况下就完全可以省去volatile修饰变量。

四、硬件层的内存屏障(Memory Barrier)

在介绍volatile禁止重排优化之前先了解一下硬件层的内存屏障

Intel硬件提供了一系列的内存屏障,主要有:

  1. lfence,是一种Load Barrier 读屏障
  2. sfence, 是一种Store Barrier 写屏障
  3. mfence, 是一种全能型的屏障,具备ifence和sfence的能力
  4. Lock前缀,Lock不是一种内存屏障,但是它能完成类似内存屏障的功能。Lock会对CPU总线和高速缓存加锁,可以理解为CPU指令级的一种锁。它后面可以跟ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCH8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and XCHG等指令。

1、JVM中提供了四类内存屏障指令

不同硬件实现内存屏障的方式不同,Java内存模型屏蔽了这种底层硬件平台的差异,由JVM来为不同的平台生成相应的机器码。

屏障类型 指令示例 说明
LoadLoad Load1; LoadLoad; Load2 保证load1的读取操作在load2及后续读取操作之前执行
StoreStore Store1; StoreStore; Store2 在store2及其后的写操作执行前,保证store1的写操作已刷新到主内存
LoadStore Load1; LoadStore; Store2 在stroe2及其后的写操作执行前,保证load1的读操作已读取结束
StoreLoad Store1; StoreLoad; Load2 保证store1的写操作已刷新到主内存之后,load2及其后的读操作才能执行

2、内存屏障的作用

内存屏障,又称内存栅栏,是一个CPU指令

(1)保证特定操作的执行顺序
(2)是保证某些变量的内存可见性(利用该特性实现volatile的内存可见性)。
由于编译器和处理器都能执行指令重排优化。如果在指令间插入一条Memory Barrier则会告诉编译器和CPU,不管什么指令都不能和这条Memory Barrier指令重排序,也就是说通过插入内存屏障禁止在内存屏障前后的指令执行重排序优化。Memory Barrier的另外一个作用是强制刷出各种CPU的缓存数据,因此任何CPU上的线程都能读取到这些数据的最新版本。

五、volatile禁止重排优化

volatile变量正是通过内存屏障实现其在内存中的语义,即可见性和禁止重排优化。下面看一个非常典型的禁止重排优化的例子DCL,如下:

public class DoubleCheckLock {
    private volatile static DoubleCheckLock instance;
    private DoubleCheckLock(){}
    public static DoubleCheckLock getInstance(){
        //第一次检测
        if (instance==null){
            //同步
            synchronized (DoubleCheckLock.class){
                if (instance == null){
                    //多线程环境下可能会出现问题的地方
                    instance = new  DoubleCheckLock();
                }
            }
        }
        return instance;
    }
}

上述代码一个经典的单例的双重检测的代码,这段代码在单线程环境下并没有什么问题,但如果在多线程环境下就可以出现线程安全问题。原因在于某一个线程执行到第一次检测,读取到的instance不为null时,instance的引用对象可能没有完成初始化。

因为instance = new DoubleCheckLock();可以分为以下3步完成(伪代码)

memory = allocate();//1.分配对象内存空间
instance(memory);//2.初始化对象
instance = memory;//3.设置instance指向刚分配的内存地址,此时instance!=null

由于步骤1和步骤2间可能会重排序,如下:

memory=allocate();//1.分配对象内存空间
instance=memory;//3.设置instance指向刚分配的内存地址,此时instance!=null,但是对象还没有初始化完成!
instance(memory);//2.初始化对象

由于步骤2和步骤3不存在数据依赖关系,而且无论重排前还是重排后程序的执行结果在单线程中并没有改变,因此这种重排优化是允许的。但是指令重排只会保证串行语义的执行的一致性(单线程),但并不会关心多线程间的语义一致性。所以当一条线程访问instance不为null时,由于instance实例未必已初始化完成,也就造成了线程安全问题。那么该如何解决呢,很简单,我们使用volatile禁止instance变量被执行指令重排优化即可。

  //禁止指令重排优化
private volatile static DoubleCheckLock instance;

六、volatile内存语义

volatile会对我们的代码重排序加上一定的限制规则,例如下面这个是JMM针对编译器制定的volatile重排序规则表。

第一个操作 第二个操作:普通读写 第二个操作:volatile读 第二个操作:volatile写
普通读写 可以重排 可以重排 不可以重排
volatile读 不可以重排 不可以重排 不可以重排
volatile写 可以重排 不可以重排 不可以重排

上面的这些规则呢,主要就是防止在多线程的环境下,指令重排给我们带来的不一定的结果,自己理解着记忆吧。
比如说:
(1)当第一个操作为 volatile读 时,第二个操作无论是什么都不可以重排,要保证第一个读操作的正确性。
(2)当第二个操作为 volatile写 时,第一个操作无论是什么都不可以重排,要保证第二个写操作的正确性。
JMM的保守策略

1、在每个volatile写操作的前面插入一个StoreStore屏障。
2、在每个volatile写操作的后面插入一个StoreLoad屏障。
3、在每个volatile读操作的后面插入一个LoadLoad屏障。
4、在每个volatile读操作的后面插入一个LoadStore屏障。

你可能感兴趣的:(JAVA并发编程,java)