缓存淘汰算法(LRU)

1. LRU 原理

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

1.2. 实现

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下:

  1.  新数据插入到链表头部;
  2.  每当缓存命中(即缓存数据被访问),则将数据移到链表头部;
  3. 当链表满的时候,将链表尾部的数据丢弃。

1.3. 分析

【命中率】

  • 当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。

【复杂度】

  • 实现简单。

【代价】

  • 命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。

2. LRU-K

2.1. 原理

LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。

2.2. 实现

相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。详细实现如下:

  1.  数据第一次被访问,加入到访问历史列表;
  2.  如果数据在访问历史列表里后没有达到K次访问,则按照一定规则(FIFO,LRU)淘汰;
  3. 当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列删除,将数据移到缓存队列中,并缓存此数据,缓存队列重新按照时间排序;
  4.  缓存数据队列中被再次访问后,重新排序;
  5. . 需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即:淘汰“倒数第K次访问离现在最久”的数据。

LRU-K具有LRU的优点,同时能够避免LRU的缺点,实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。

2.3. 分析

【命中率】

  • LRU-K降低了“缓存污染”带来的问题,命中率比LRU要高。

【复杂度】

  • LRU-K队列是一个优先级队列,算法复杂度和代价比较高。

【代价】

  • 由于LRU-K还需要记录那些被访问过、但还没有放入缓存的对象,因此内存消耗会比LRU要多;当数据量很大的时候,内存消耗会比较可观。
  • LRU-K需要基于时间进行排序(可以需要淘汰时再排序,也可以即时排序),CPU消耗比LRU要高。

3. Two queues(2Q)

3.1. 原理

Two queues(以下使用2Q代替)算法类似于LRU-2,不同点在于2Q将LRU-2算法中的访问历史队列(注意这不是缓存数据的)改为一个FIFO缓存队列,即:2Q算法有两个缓存队列,一个是FIFO队列,一个是LRU队列。

3.2. 实现

当数据第一次访问时,2Q算法将数据缓存在FIFO队列里面,当数据第二次被访问时,则将数据从FIFO队列移到LRU队列里面,两个队列各自按照自己的方法淘汰数据。详细实现如下:

  1.  新访问的数据插入到FIFO队列;
  2.  如果数据在FIFO队列中一直没有被再次访问,则最终按照FI

你可能感兴趣的:(算法,数据库,数据库,算法)