数据清洗和准备
处理缺失数据
import pandas as pd
import numpy as np
string_data=pd.Series(['aardvark','artichoke',np.nan,'avocado'])
string_data
0 aardvark
1 artichoke
2 NaN
3 avocado
dtype: object
对于数值数据,pandas使用浮点值NaN(Not a Number)表示缺失数据
string_data.isnull()
0 False
1 False
2 True
3 False
dtype: bool
即将缺失值表示为NA,它表示不可用not available。在统计应用中,NA数据可能是不存在的数据或者虽然存在,但是没
有观察到(例如,数据采集中发生了问题)
Python内置的None值在对象数组中也可以作为NA:
string_data[0]=None
string_data.isnull()
0 True
1 False
2 True
3 False
dtype: bool
关于缺失数据处理的函数:
dropna:根据各标签的之值中是否存在缺失数据对轴标签进行过滤,可通过与之调节对缺失值得容忍度
fillna:用指定值或插值方法(ffill或者bfill)填充数据
isnull:返回一个含有布尔值的对象,这些对象表示哪些值是缺失值NA,该对象的类型与原类型一样
notnull:isnull的否定式
from numpy import nan as NA
data=pd.Series([1,NA,3.5,NA,7])
data.dropna()
0 1.0
2 3.5
4 7.0
dtype: float64
data[data.notnull()]
0 1.0
2 3.5
4 7.0
dtype: float64
dropna默认丢弃任何含有缺失值的列
data = pd.DataFrame([[1., 6.5, 3.], [1., NA, NA],[NA, NA, NA], [NA, 6.5, 3.]])
cleaned=data.dropna()
data
|
0 |
1 |
2 |
0 |
1.0 |
6.5 |
3.0 |
1 |
1.0 |
NaN |
NaN |
2 |
NaN |
NaN |
NaN |
3 |
NaN |
6.5 |
3.0 |
cleaned
cleaned_how=data.dropna(how='all')
cleaned_how
|
0 |
1 |
2 |
0 |
1.0 |
6.5 |
3.0 |
1 |
1.0 |
NaN |
NaN |
3 |
NaN |
6.5 |
3.0 |
data[4]=NA
data
|
0 |
1 |
2 |
4 |
0 |
1.0 |
6.5 |
3.0 |
NaN |
1 |
1.0 |
NaN |
NaN |
NaN |
2 |
NaN |
NaN |
NaN |
NaN |
3 |
NaN |
6.5 |
3.0 |
NaN |
data.dropna(how='all',axis=1)
|
0 |
1 |
2 |
0 |
1.0 |
6.5 |
3.0 |
1 |
1.0 |
NaN |
NaN |
2 |
NaN |
NaN |
NaN |
3 |
NaN |
6.5 |
3.0 |
除DataFrame行的问题涉及时间序列数据。假设你只想留下一部分观测数
据,可以用thresh参数实现此目的:
thresh参数用法是:保留至少有n个非NaN数据的行/列
df=pd.DataFrame(np.random.randn(7,3))
df.iloc[:4,1]=NA
df.iloc[:2,2]=NA
df
|
0 |
1 |
2 |
0 |
1.219978 |
NaN |
NaN |
1 |
0.341182 |
NaN |
NaN |
2 |
0.782306 |
NaN |
0.402269 |
3 |
0.033353 |
NaN |
0.666443 |
4 |
-0.761581 |
-1.232945 |
-0.291452 |
5 |
-0.516256 |
-0.442507 |
0.850908 |
6 |
1.827264 |
0.286749 |
0.924544 |
df.dropna()
|
0 |
1 |
2 |
4 |
-0.761581 |
-1.232945 |
-0.291452 |
5 |
-0.516256 |
-0.442507 |
0.850908 |
6 |
1.827264 |
0.286749 |
0.924544 |
df.dropna(thresh=2)
|
0 |
1 |
2 |
2 |
0.782306 |
NaN |
0.402269 |
3 |
0.033353 |
NaN |
0.666443 |
4 |
-0.761581 |
-1.232945 |
-0.291452 |
5 |
-0.516256 |
-0.442507 |
0.850908 |
6 |
1.827264 |
0.286749 |
0.924544 |
填充缺失数据fillna()
df.fillna(0)
|
0 |
1 |
2 |
0 |
1.219978 |
0.000000 |
0.000000 |
1 |
0.341182 |
0.000000 |
0.000000 |
2 |
0.782306 |
0.000000 |
0.402269 |
3 |
0.033353 |
0.000000 |
0.666443 |
4 |
-0.761581 |
-1.232945 |
-0.291452 |
5 |
-0.516256 |
-0.442507 |
0.850908 |
6 |
1.827264 |
0.286749 |
0.924544 |
若是通过一个字典调用fillna,就可以实现对不同的列填充不同的值
df.fillna({1:0.5,2:0})
|
0 |
1 |
2 |
0 |
1.219978 |
0.500000 |
0.000000 |
1 |
0.341182 |
0.500000 |
0.000000 |
2 |
0.782306 |
0.500000 |
0.402269 |
3 |
0.033353 |
0.500000 |
0.666443 |
4 |
-0.761581 |
-1.232945 |
-0.291452 |
5 |
-0.516256 |
-0.442507 |
0.850908 |
6 |
1.827264 |
0.286749 |
0.924544 |
_=df.copy()
_
|
0 |
1 |
2 |
0 |
1.219978 |
NaN |
NaN |
1 |
0.341182 |
NaN |
NaN |
2 |
0.782306 |
NaN |
0.402269 |
3 |
0.033353 |
NaN |
0.666443 |
4 |
-0.761581 |
-1.232945 |
-0.291452 |
5 |
-0.516256 |
-0.442507 |
0.850908 |
6 |
1.827264 |
0.286749 |
0.924544 |
_.fillna(0)
|
0 |
1 |
2 |
0 |
1.219978 |
0.000000 |
0.000000 |
1 |
0.341182 |
0.000000 |
0.000000 |
2 |
0.782306 |
0.000000 |
0.402269 |
3 |
0.033353 |
0.000000 |
0.666443 |
4 |
-0.761581 |
-1.232945 |
-0.291452 |
5 |
-0.516256 |
-0.442507 |
0.850908 |
6 |
1.827264 |
0.286749 |
0.924544 |
_
|
0 |
1 |
2 |
0 |
1.219978 |
NaN |
NaN |
1 |
0.341182 |
NaN |
NaN |
2 |
0.782306 |
NaN |
0.402269 |
3 |
0.033353 |
NaN |
0.666443 |
4 |
-0.761581 |
-1.232945 |
-0.291452 |
5 |
-0.516256 |
-0.442507 |
0.850908 |
6 |
1.827264 |
0.286749 |
0.924544 |
_.fillna(0,inplace=True)
_
|
0 |
1 |
2 |
0 |
1.219978 |
0.000000 |
0.000000 |
1 |
0.341182 |
0.000000 |
0.000000 |
2 |
0.782306 |
0.000000 |
0.402269 |
3 |
0.033353 |
0.000000 |
0.666443 |
4 |
-0.761581 |
-1.232945 |
-0.291452 |
5 |
-0.516256 |
-0.442507 |
0.850908 |
6 |
1.827264 |
0.286749 |
0.924544 |
df = pd.DataFrame(np.random.randn(6, 3))
df.iloc[2:, 1] = NA
df.iloc[4:, 2] = NA
df
|
0 |
1 |
2 |
0 |
-1.029961 |
-0.41851 |
0.634309 |
1 |
-0.621635 |
-0.24739 |
0.783342 |
2 |
-1.659875 |
NaN |
-0.231234 |
3 |
0.513173 |
NaN |
-1.094123 |
4 |
1.787183 |
NaN |
NaN |
5 |
-0.611099 |
NaN |
NaN |
df.fillna(method='ffill')
|
0 |
1 |
2 |
0 |
-1.029961 |
-0.41851 |
0.634309 |
1 |
-0.621635 |
-0.24739 |
0.783342 |
2 |
-1.659875 |
-0.24739 |
-0.231234 |
3 |
0.513173 |
-0.24739 |
-1.094123 |
4 |
1.787183 |
-0.24739 |
-1.094123 |
5 |
-0.611099 |
-0.24739 |
-1.094123 |
df.fillna(0,limit=2)
|
0 |
1 |
2 |
0 |
-1.029961 |
-0.41851 |
0.634309 |
1 |
-0.621635 |
-0.24739 |
0.783342 |
2 |
-1.659875 |
0.00000 |
-0.231234 |
3 |
0.513173 |
0.00000 |
-1.094123 |
4 |
1.787183 |
NaN |
0.000000 |
5 |
-0.611099 |
NaN |
0.000000 |
fillna
- value:用于填充缺失值的标量值或字典对象
- method:插值方式,默认ffill
- axis:待填充的轴,默认axis=0
- inplace:修改调用者对象而不产生副本
- limit:(对于前向和后向填充)可以连续填充的最大数量
数据转换
重复数据处理
data = pd.DataFrame({'k1': ['one', 'two'] * 3 + ['two'],
'k2': [1, 1, 2, 3, 3, 4, 4]})
data
|
k1 |
k2 |
0 |
one |
1 |
1 |
two |
1 |
2 |
one |
2 |
3 |
two |
3 |
4 |
one |
3 |
5 |
two |
4 |
6 |
two |
4 |
DataFrame的duplicated方法返回一个布尔型Series,表示各行是否是重复行
data.duplicated()
0 False
1 False
2 False
3 False
4 False
5 False
6 True
dtype: bool
data.drop_duplicates()
|
k1 |
k2 |
0 |
one |
1 |
1 |
two |
1 |
2 |
one |
2 |
3 |
two |
3 |
4 |
one |
3 |
5 |
two |
4 |
data['v1']=range(7)
data
|
k1 |
k2 |
v1 |
0 |
one |
1 |
0 |
1 |
two |
1 |
1 |
2 |
one |
2 |
2 |
3 |
two |
3 |
3 |
4 |
one |
3 |
4 |
5 |
two |
4 |
5 |
6 |
two |
4 |
6 |
data.drop_duplicates(['k1'])
|
k1 |
k2 |
v1 |
0 |
one |
1 |
0 |
1 |
two |
1 |
1 |
duplicated和drop_duplicates默认保留的是第一个出现的值组合。传入keep='last’则
保留最后一个:
data.drop_duplicates(['k1','k2'],keep='last')
|
k1 |
k2 |
v1 |
0 |
one |
1 |
0 |
1 |
two |
1 |
1 |
2 |
one |
2 |
2 |
3 |
two |
3 |
3 |
4 |
one |
3 |
4 |
6 |
two |
4 |
6 |
利用函数或映射进行数据转换
data = pd.DataFrame({'food': ['bacon', 'pulled pork', 'bacon', 'Pastrami', 'corned beef', 'Bacon','pastrami', 'honey ham','nova lox'],
'ounces': [4, 3, 12, 6, 7.5, 8, 3,5, 6]})
data
|
food |
ounces |
0 |
bacon |
4.0 |
1 |
pulled pork |
3.0 |
2 |
bacon |
12.0 |
3 |
Pastrami |
6.0 |
4 |
corned beef |
7.5 |
5 |
Bacon |
8.0 |
6 |
pastrami |
3.0 |
7 |
honey ham |
5.0 |
8 |
nova lox |
6.0 |
meat_to_animal = {
'bacon': 'pig',
'pulled pork': 'pig',
'pastrami': 'cow',
'corned beef': 'cow',
'honey ham': 'pig',
'nova lox': 'salmon'
}
lowercased=data['food'].str.lower()
lowercased
0 bacon
1 pulled pork
2 bacon
3 pastrami
4 corned beef
5 bacon
6 pastrami
7 honey ham
8 nova lox
Name: food, dtype: object
data['animal']=lowercased.map(meat_to_animal)
data
|
food |
ounces |
animal |
0 |
bacon |
4.0 |
pig |
1 |
pulled pork |
3.0 |
pig |
2 |
bacon |
12.0 |
pig |
3 |
Pastrami |
6.0 |
cow |
4 |
corned beef |
7.5 |
cow |
5 |
Bacon |
8.0 |
pig |
6 |
pastrami |
3.0 |
cow |
7 |
honey ham |
5.0 |
pig |
8 |
nova lox |
6.0 |
salmon |
data['food'].map(lambda x:meat_to_animal[x.lower()])
0 pig
1 pig
2 pig
3 cow
4 cow
5 pig
6 cow
7 pig
8 salmon
Name: food, dtype: object
替换值replace
data = pd.Series([1., -999., 2., -999., -1000., 3.])
data
0 1.0
1 -999.0
2 2.0
3 -999.0
4 -1000.0
5 3.0
dtype: float64
data.replace(-999,np.nan)
0 1.0
1 NaN
2 2.0
3 NaN
4 -1000.0
5 3.0
dtype: float64
data.replace([-999,-1000],np.nan)
0 1.0
1 NaN
2 2.0
3 NaN
4 NaN
5 3.0
dtype: float64
data.replace([-999,-1000],[np.nan,0])
0 1.0
1 NaN
2 2.0
3 NaN
4 0.0
5 3.0
dtype: float64
data.replace({-999:np.nan,-1000:0})
0 1.0
1 NaN
2 2.0
3 NaN
4 0.0
5 3.0
dtype: float64
重命名轴索引
data = pd.DataFrame(np.arange(12).reshape((3, 4)),
index=['Ohio', 'Colorado', 'New York'],
columns=['one', 'two', 'three', 'four'])
data.index.map(lambda x:x[:4].upper())
Index(['OHIO', 'COLO', 'NEW '], dtype='object')
data.index =data.index.map(lambda x:x[:4].upper())
data
|
one |
two |
three |
four |
OHIO |
0 |
1 |
2 |
3 |
COLO |
4 |
5 |
6 |
7 |
NEW |
8 |
9 |
10 |
11 |
如果想要创建数据集的转换版(而不是修改原始数据),比较实用的方法是
rename
data.rename(index=str.upper,columns=str.upper)
|
ONE |
TWO |
THREE |
FOUR |
OHIO |
0 |
1 |
2 |
3 |
COLO |
4 |
5 |
6 |
7 |
NEW |
8 |
9 |
10 |
11 |
data.rename(index={'Ohio':'INDIANA'},
columns={'three':'peekaboo'})
|
one |
two |
peekaboo |
four |
OHIO |
0 |
1 |
2 |
3 |
COLO |
4 |
5 |
6 |
7 |
NEW |
8 |
9 |
10 |
11 |
data.rename(index={'Ohio':'indiana'},inplace=True)
data
|
one |
two |
three |
four |
OHIO |
0 |
1 |
2 |
3 |
COLO |
4 |
5 |
6 |
7 |
NEW |
8 |
9 |
10 |
11 |
离散化和面元划分
为了便于分析,连续数据常常被离散化或拆分为“面元”(bin),使用pandas的cut函数
ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
bins = [18, 25, 35, 60, 100]
cats=pd.cut(ages,bins)
cats
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]
Length: 12
Categories (4, interval[int64, right]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]
cats.codes
array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int8)
cats.categories
IntervalIndex([(18, 25], (25, 35], (35, 60], (60, 100]], dtype='interval[int64, right]')
pd.value_counts(cats)
(18, 25] 5
(25, 35] 3
(35, 60] 3
(60, 100] 1
Name: count, dtype: int64
跟“区间”的数学符号一样,圆括号表示开端,而方括号则表示闭端(包括)。哪边
是闭端可以通过right=False进行修改
pd.cut(ages,[18,26,36,61,100],right=False)
[[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), [36, 61), [36, 61), [26, 36)]
Length: 12
Categories (4, interval[int64, left]): [[18, 26) < [26, 36) < [36, 61) < [61, 100)]
你可 以通过传递一个列表或数组到labels,设置自己的面元名称
group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior']
pd.cut(ages,bins,labels=group_names)
['Youth', 'Youth', 'Youth', 'YoungAdult', 'Youth', ..., 'YoungAdult', 'Senior', 'MiddleAged', 'MiddleAged', 'YoungAdult']
Length: 12
Categories (4, object): ['Youth' < 'YoungAdult' < 'MiddleAged' < 'Senior']
data=np.random.rand(20)
data
array([0.50910844, 0.01886219, 0.95908375, 0.72900936, 0.88044385,
0.94608156, 0.13493984, 0.91195245, 0.46857512, 0.38525391,
0.02991488, 0.31362695, 0.15493992, 0.74873532, 0.6170826 ,
0.84356457, 0.09466064, 0.01974264, 0.97598584, 0.43164735])
如果向cut传入的是面元的数量而不是确切的面元边界,则它会根据数据的最小值和
最大值计算等长面元
pd.cut(data,4,precision=2)
[(0.5, 0.74], (0.018, 0.26], (0.74, 0.98], (0.5, 0.74], (0.74, 0.98], ..., (0.74, 0.98], (0.018, 0.26], (0.018, 0.26], (0.74, 0.98], (0.26, 0.5]]
Length: 20
Categories (4, interval[float64, right]): [(0.018, 0.26] < (0.26, 0.5] < (0.5, 0.74] < (0.74, 0.98]]
qcut是一个非常类似于cut的函数,它可以根据样本分位数对数据进行面元划分。根
据数据的分布情况,cut可能无法使各个面元中含有相同数量的数据点。而qcut由于
使用的是样本分位数,因此可以得到大小基本相等的面元:
data=np.random.randn(1000)
cats=pd.qcut(data,4)
cats
[(-0.601, -0.0125], (-2.885, -0.601], (-0.0125, 0.673], (-0.0125, 0.673], (-2.885, -0.601], ..., (-2.885, -0.601], (-2.885, -0.601], (-0.0125, 0.673], (-0.0125, 0.673], (0.673, 3.875]]
Length: 1000
Categories (4, interval[float64, right]): [(-2.885, -0.601] < (-0.601, -0.0125] < (-0.0125, 0.673] < (0.673, 3.875]]
pd.value_counts(cats)
(-2.885, -0.601] 250
(-0.601, -0.0125] 250
(-0.0125, 0.673] 250
(0.673, 3.875] 250
Name: count, dtype: int64
与cut类似,你也可以传递自定义的分位数(0到1之间的数值,包含端点)
pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])
[(-1.22, -0.0125], (-2.885, -1.22], (-0.0125, 1.303], (-0.0125, 1.303], (-1.22, -0.0125], ..., (-1.22, -0.0125], (-2.885, -1.22], (-0.0125, 1.303], (-0.0125, 1.303], (-0.0125, 1.303]]
Length: 1000
Categories (4, interval[float64, right]): [(-2.885, -1.22] < (-1.22, -0.0125] < (-0.0125, 1.303] < (1.303, 3.875]]
检测和过滤异常值
过滤或变换异常值(outlier)在很大程度上就是运用数组运算。
data=pd.DataFrame(np.random.randn(1000,4))
data.describe()
|
0 |
1 |
2 |
3 |
count |
1000.000000 |
1000.000000 |
1000.000000 |
1000.000000 |
mean |
-0.001687 |
-0.036570 |
0.049180 |
0.010509 |
std |
1.007410 |
0.971646 |
1.013227 |
0.982367 |
min |
-3.127882 |
-2.643439 |
-2.949846 |
-2.962251 |
25% |
-0.678444 |
-0.719395 |
-0.650478 |
-0.636513 |
50% |
0.001463 |
-0.022189 |
0.061264 |
0.046104 |
75% |
0.675910 |
0.629861 |
0.710325 |
0.642668 |
max |
3.162745 |
4.108418 |
3.597951 |
4.410464 |
col=data[2]
col[np.abs(col)>3]
565 3.597951
Name: 2, dtype: float64
data[(np.abs(data) > 3).any(axis=1)]
|
0 |
1 |
2 |
3 |
16 |
-3.010992 |
-0.122886 |
1.194125 |
0.702766 |
111 |
-1.152743 |
4.108418 |
-2.097178 |
0.831827 |
219 |
-3.127882 |
1.781813 |
0.011281 |
0.587799 |
565 |
0.099141 |
-1.705600 |
3.597951 |
0.345174 |
596 |
3.162745 |
-1.597465 |
-0.552896 |
-2.756078 |
625 |
-0.042392 |
3.189888 |
0.723891 |
-0.670110 |
835 |
-1.125737 |
-0.699685 |
-1.730857 |
4.410464 |
data[np.abs(data) > 3] = np.sign(data) * 3
data.describe()
|
0 |
1 |
2 |
3 |
count |
1000.000000 |
1000.000000 |
1000.000000 |
1000.000000 |
mean |
-0.001711 |
-0.037868 |
0.048582 |
0.009099 |
std |
1.006490 |
0.966920 |
1.011305 |
0.977041 |
min |
-3.000000 |
-2.643439 |
-2.949846 |
-2.962251 |
25% |
-0.678444 |
-0.719395 |
-0.650478 |
-0.636513 |
50% |
0.001463 |
-0.022189 |
0.061264 |
0.046104 |
75% |
0.675910 |
0.629861 |
0.710325 |
0.642668 |
max |
3.000000 |
3.000000 |
3.000000 |
3.000000 |
np.sign(data).head()
|
0 |
1 |
2 |
3 |
0 |
1.0 |
1.0 |
1.0 |
-1.0 |
1 |
-1.0 |
1.0 |
1.0 |
-1.0 |
2 |
1.0 |
1.0 |
1.0 |
-1.0 |
3 |
1.0 |
1.0 |
1.0 |
-1.0 |
4 |
-1.0 |
-1.0 |
-1.0 |
-1.0 |
排列和随机采样
利用numpy.random.permutation函数可以轻松实现对Series或DataFrame的列的排
列工作(permuting,随机重排序)。通过需要排列的轴的长度调用permutation,
可产生一个表示新顺序的整数数组
df = pd.DataFrame(np.arange(5 * 4).reshape((5, 4)))
df
|
0 |
1 |
2 |
3 |
0 |
0 |
1 |
2 |
3 |
1 |
4 |
5 |
6 |
7 |
2 |
8 |
9 |
10 |
11 |
3 |
12 |
13 |
14 |
15 |
4 |
16 |
17 |
18 |
19 |
sampler = np.random.permutation(5)
sampler
array([4, 0, 3, 1, 2])
df.take(sampler)
|
0 |
1 |
2 |
3 |
4 |
16 |
17 |
18 |
19 |
0 |
0 |
1 |
2 |
3 |
3 |
12 |
13 |
14 |
15 |
1 |
4 |
5 |
6 |
7 |
2 |
8 |
9 |
10 |
11 |
df.sample(n=3)
|
0 |
1 |
2 |
3 |
0 |
0 |
1 |
2 |
3 |
1 |
4 |
5 |
6 |
7 |
3 |
12 |
13 |
14 |
15 |
choices=pd. Series([5,7,-1,6,4])
draws=choices.sample(n=10,replace=True)
draws
0 5
2 -1
0 5
3 6
0 5
3 6
1 7
1 7
2 -1
0 5
dtype: int64
哑变量处理
df = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
'data1': range(6)})
df
|
key |
data1 |
0 |
b |
0 |
1 |
b |
1 |
2 |
a |
2 |
3 |
c |
3 |
4 |
a |
4 |
5 |
b |
5 |
pd.get_dummies(df['key'])
|
a |
b |
c |
0 |
False |
True |
False |
1 |
False |
True |
False |
2 |
True |
False |
False |
3 |
False |
False |
True |
4 |
True |
False |
False |
5 |
False |
True |
False |
你可能想给指标DataFrame的列加上一个前缀,以便能够跟其他数据进行
合并。get_dummies的prefix参数可以实现该功能
dummies=pd.get_dummies(df['key'],prefix='key')
df_with_dummy=df[['data1']].join(dummies)
df_with_dummy
|
data1 |
key_a |
key_b |
key_c |
0 |
0 |
False |
True |
False |
1 |
1 |
False |
True |
False |
2 |
2 |
True |
False |
False |
3 |
3 |
False |
False |
True |
4 |
4 |
True |
False |
False |
5 |
5 |
False |
True |
False |
如果DataFrame中的某行同属于多个分类,则事情就会有点复杂。看一下
MovieLens 1M数据集
mnames = ['movie_id', 'title', 'genres']
movies = pd.read_table('F:/项目学习/利用Pyhon进行数据分析(第二版)/利用Pyhon进行数据分析/pydata-book-2nd-edition/datasets/movielens/movies.dat', sep='::', header=None, names=mnames,encoding='ISO-8859-1')
movies[:10]
C:\Users\Dell\AppData\Local\Temp\ipykernel_26068\3411970987.py:2: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.
movies = pd.read_table('F:/项目学习/利用Pyhon进行数据分析(第二版)/利用Pyhon进行数据分析/pydata-book-2nd-edition/datasets/movielens/movies.dat', sep='::', header=None, names=mnames,encoding='ISO-8859-1')
|
movie_id |
title |
genres |
0 |
1 |
Toy Story (1995) |
Animation|Children's|Comedy |
1 |
2 |
Jumanji (1995) |
Adventure|Children's|Fantasy |
2 |
3 |
Grumpier Old Men (1995) |
Comedy|Romance |
3 |
4 |
Waiting to Exhale (1995) |
Comedy|Drama |
4 |
5 |
Father of the Bride Part II (1995) |
Comedy |
5 |
6 |
Heat (1995) |
Action|Crime|Thriller |
6 |
7 |
Sabrina (1995) |
Comedy|Romance |
7 |
8 |
Tom and Huck (1995) |
Adventure|Children's |
8 |
9 |
Sudden Death (1995) |
Action |
9 |
10 |
GoldenEye (1995) |
Action|Adventure|Thriller |
all_genres=[]
movies.genres.map(lambda x:all_genres.extend(x.split('|')))
all_genres
['Animation',
"Children's",
'Comedy',
'Adventure',
"Children's",
'Fantasy',
'Comedy',
'Romance',
'Comedy',
'Drama',
'Comedy',
'Action',
'Crime',
'Thriller',
'Comedy',
'Romance',
'Adventure',
"Children's",
'Action',
'Action',
'Adventure',
'Thriller',
'Comedy',
'Drama',
'Romance',
'Comedy',
'Horror',
'Animation',
"Children's",
'Drama',
'Action',
'Adventure',
'Romance',
'Drama',
'Thriller',
'Drama',
'Romance',
'Thriller',
'Comedy',
'Action',
'Action',
'Comedy',
'Drama',
'Crime',
'Drama',
'Thriller',
'Thriller',
'Drama',
'Sci-Fi',
'Drama',
'Romance',
'Drama',
'Drama',
'Romance',
'Adventure',
'Sci-Fi',
'Drama',
'Drama',
'Drama',
'Sci-Fi',
'Adventure',
'Romance',
"Children's",
'Comedy',
'Drama',
'Drama',
'Romance',
'Drama',
'Documentary',
'Comedy',
'Comedy',
'Romance',
'Drama',
'Drama',
'War',
'Action',
'Crime',
'Drama',
'Drama',
'Action',
'Adventure',
'Comedy',
'Drama',
'Drama',
'Romance',
'Crime',
'Thriller',
'Animation',
"Children's",
'Musical',
'Romance',
'Drama',
'Romance',
'Crime',
'Thriller',
'Action',
'Drama',
'Thriller',
'Comedy',
'Drama',
"Children's",
'Comedy',
'Drama',
'Adventure',
"Children's",
'Fantasy',
'Drama',
'Drama',
'Romance',
'Drama',
'Mystery',
'Adventure',
"Children's",
'Fantasy',
'Drama',
'Thriller',
'Drama',
'Comedy',
'Comedy',
'Romance',
'Comedy',
'Sci-Fi',
'Thriller',
'Drama',
'Comedy',
'Romance',
'Comedy',
'Action',
'Comedy',
'Crime',
'Horror',
'Thriller',
'Action',
'Comedy',
'Drama',
'Drama',
'Musical',
'Drama',
'Romance',
'Comedy',
'Drama',
'Sci-Fi',
'Thriller',
'Documentary',
'Drama',
'Drama',
'Thriller',
'Drama',
'Crime',
'Drama',
'Romance',
'Drama',
'Drama',
'Comedy',
'Drama',
'Drama',
'Romance',
'Adventure',
'Drama',
"Children's",
'Comedy',
'Comedy',
'Action',
'Thriller',
'Drama',
'Drama',
'Thriller',
'Comedy',
'Romance',
'Drama',
'Action',
'Thriller',
'Comedy',
'Drama',
'Action',
'Thriller',
'Documentary',
'Drama',
'Thriller',
'Comedy',
'Comedy',
'Thriller',
'Comedy',
'Drama',
'Romance',
'Comedy',
'Drama',
'Adventure',
"Children's",
'Comedy',
'Musical',
'Documentary',
'Comedy',
'Action',
'Drama',
'War',
'Drama',
'Thriller',
'Action',
'Adventure',
'Crime',
'Drama',
'Mystery',
'Drama',
'Comedy',
'Documentary',
'Crime',
'Comedy',
'Romance',
'Comedy',
'Drama',
'Drama',
'Comedy',
'Romance',
'Drama',
'Mystery',
'Romance',
'Drama',
'Comedy',
'Adventure',
"Children's",
'Fantasy',
'Drama',
'Documentary',
'Comedy',
'Romance',
'Drama',
'Drama',
'Romance',
'Thriller',
'Comedy',
'Drama',
'Documentary',
'Comedy',
'Documentary',
'Documentary',
'Drama',
'Action',
'Drama',
'Drama',
'Romance',
'Comedy',
'Drama',
'Drama',
'Comedy',
'Action',
'Adventure',
"Children's",
'Drama',
'Drama',
'Crime',
'Drama',
'Thriller',
'Drama',
'Drama',
'Romance',
'War',
'Horror',
'Action',
'Adventure',
'Comedy',
'Crime',
'Drama',
'Drama',
'War',
'Comedy',
'Comedy',
'War',
'Adventure',
"Children's",
'Drama',
'Action',
'Adventure',
'Mystery',
'Sci-Fi',
'Drama',
'Thriller',
'War',
'Documentary',
'Action',
'Romance',
'Thriller',
'Crime',
'Film-Noir',
'Mystery',
'Thriller',
'Action',
'Thriller',
'Comedy',
'Drama',
'Drama',
'Action',
'Adventure',
'Drama',
'Romance',
'Adventure',
"Children's",
'Drama',
'Action',
'Crime',
'Thriller',
'Comedy',
'Action',
'Sci-Fi',
'Thriller',
'Action',
'Adventure',
'Sci-Fi',
'Comedy',
'Drama',
'Comedy',
'Horror',
'Comedy',
'Drama',
'Romance',
'Comedy',
'Action',
"Children's",
'Drama',
'Romance',
'Thriller',
'Drama',
'Sci-Fi',
'Thriller',
'Comedy',
'Comedy',
'Horror',
'Comedy',
'Thriller',
'Drama',
'Documentary',
'Drama',
'Drama',
'Comedy',
'Drama',
'Romance',
'Horror',
'Sci-Fi',
'Drama',
'Action',
'Crime',
'Sci-Fi',
'Drama',
'Musical',
'Thriller',
'Drama',
'Drama',
'Romance',
'Comedy',
'Action',
'Comedy',
'Drama',
'Documentary',
'Drama',
'Romance',
'Action',
'Adventure',
'Drama',
'Western',
'Drama',
'Comedy',
'Drama',
'Drama',
'Drama',
'Romance',
'Comedy',
'Drama',
'Thriller',
'Comedy',
'Drama',
'Drama',
'Horror',
'Drama',
'Romance',
'Comedy',
'Comedy',
'Drama',
'Romance',
'Drama',
'Thriller',
'Thriller',
'Action',
'Comedy',
'Drama',
'Thriller',
'Drama',
'Thriller',
'Comedy',
'Comedy',
'Drama',
'Drama',
'Comedy',
'Comedy',
'Drama',
'Comedy',
'Romance',
'Comedy',
'Romance',
'Adventure',
"Children's",
'Animation',
"Children's",
'Comedy',
'Romance',
'Thriller',
"Children's",
'Drama',
'Drama',
'Musical',
'Comedy',
'Animation',
"Children's",
'Crime',
'Drama',
'Documentary',
'Drama',
'Fantasy',
'Romance',
'Thriller',
'Comedy',
'Drama',
'Romance',
"Children's",
'Comedy',
'Action',
'Comedy',
'Romance',
'Drama',
'Horror',
'Drama',
'Comedy',
'Comedy',
'Sci-Fi',
'Mystery',
'Thriller',
'Adventure',
"Children's",
'Comedy',
'Fantasy',
'Romance',
'Crime',
'Drama',
'Thriller',
'Action',
'Adventure',
'Fantasy',
'Sci-Fi',
'Drama',
"Children's",
'Drama',
'Drama',
'Drama',
'Drama',
'Romance',
'Drama',
'Romance',
'War',
'Western',
'Comedy',
'Drama',
'Drama',
'Drama',
'Romance',
'Drama',
'Drama',
'Drama',
'Horror',
'Comedy',
'Comedy',
'Comedy',
'Romance',
'Drama',
'Comedy',
'Drama',
'Drama',
'Thriller',
'Drama',
'Drama',
'Crime',
'Drama',
'Action',
'Crime',
'Drama',
'Horror',
'Action',
'Sci-Fi',
'Thriller',
'Comedy',
'Romance',
'Action',
'Thriller',
'Comedy',
'Romance',
'Crime',
'Drama',
'Thriller',
'Action',
'Drama',
'Thriller',
'Crime',
'Drama',
'Romance',
'Thriller',
'Comedy',
'Romance',
'Comedy',
'Romance',
'Crime',
'Drama',
'Drama',
'Comedy',
'Drama',
'Drama',
'Drama',
'Romance',
'Drama',
'Romance',
'Action',
'Adventure',
'Western',
'Comedy',
'Drama',
'Comedy',
'Drama',
'Drama',
'Drama',
'Drama',
'Comedy',
'Horror',
'Thriller',
'Comedy',
'Animation',
"Children's",
'Drama',
'Action',
'Action',
'Adventure',
'Sci-Fi',
"Children's",
'Comedy',
'Fantasy',
'Drama',
'Thriller',
'Film-Noir',
'Thriller',
'Drama',
'Comedy',
'Drama',
'Comedy',
'Comedy',
'Drama',
'Action',
'Comedy',
'Musical',
'Sci-Fi',
'Horror',
'Action',
'Adventure',
'Sci-Fi',
'Comedy',
'Horror',
'Drama',
'Horror',
'Sci-Fi',
'Comedy',
'Drama',
'Mystery',
'Thriller',
'Drama',
'War',
'Drama',
'Sci-Fi',
'Thriller',
'Comedy',
'Romance',
'Adventure',
'Drama',
'Drama',
'Comedy',
'Romance',
"Children's",
'Comedy',
'Comedy',
'Drama',
'Drama',
'Musical',
'Drama',
'Comedy',
'Action',
'Adventure',
'Thriller',
'Drama',
'Mystery',
'Thriller',
'Comedy',
'Drama',
'Romance',
'Comedy',
'Action',
'Romance',
'Thriller',
'Drama',
"Children's",
'Comedy',
'Comedy',
'Romance',
'War',
'Comedy',
'Romance',
'Drama',
'Comedy',
'Drama',
'Romance',
'Action',
'Comedy',
'Drama',
'Romance',
'Adventure',
"Children's",
'Romance',
'Documentary',
'Animation',
"Children's",
'Musical',
'Drama',
'Horror',
'Comedy',
'Crime',
'Fantasy',
'Action',
'Comedy',
'Western',
'Drama',
'Comedy',
'Comedy',
'Drama',
'Comedy',
'Drama',
'Thriller',
"Children's",
'Comedy',
'Drama',
'Action',
'Thriller',
'Action',
'Romance',
'Thriller',
'Comedy',
'Romance',
'Action',
'Sci-Fi',
'Action',
'Adventure',
'Comedy',
'Romance',
'Drama',
'Drama',
'Horror',
'Western',
'Action',
'Drama',
'Drama',
'Action',
'Comedy',
'Drama',
'Drama',
'Romance',
'War',
'Action',
'Comedy',
'Drama',
'Crime',
'Drama',
'Adventure',
"Children's",
'Action',
'Action',
'Drama',
'Drama',
'Horror',
'Documentary',
'Drama',
'Drama',
'Action',
'Thriller',
'Comedy',
'Comedy',
'Crime',
'Drama',
'Documentary',
'Action',
'Sci-Fi',
'Drama',
'Horror',
'Thriller',
'Drama',
'Drama',
'Comedy',
'Comedy',
'Drama',
'Comedy',
'Comedy',
'Comedy',
'Thriller',
'Western',
'Comedy',
'Romance',
'Drama',
'Comedy',
'Action',
'Comedy',
'Adventure',
"Children's",
'Thriller',
'Action',
'Thriller',
'Drama',
'Drama',
'Romance',
'Horror',
'Sci-Fi',
'Thriller',
'Mystery',
'Romance',
'Thriller',
'Drama',
'Comedy',
'Drama',
'Crime',
'Drama',
'Comedy',
'Western',
'Comedy',
'Action',
'Adventure',
'Crime',
'Comedy',
'Sci-Fi',
'Drama',
'Thriller',
'Comedy',
'Action',
'Comedy',
'Drama',
'Comedy',
'Romance',
'Comedy',
'Action',
'Sci-Fi',
'Documentary',
'Comedy',
'Romance',
'Comedy',
'Drama',
'Romance',
'Comedy',
'Romance',
'Drama',
'Comedy',
'Comedy',
'Drama',
'Drama',
'Mystery',
'Romance',
'Drama',
'Comedy',
'Drama',
'Thriller',
'Adventure',
"Children's",
'Drama',
'Drama',
'Action',
'Thriller',
'Drama',
'Western',
'Action',
'Comedy',
'Drama',
'Romance',
'Action',
'Adventure',
'Crime',
'Drama',
'Thriller',
'Action',
'Adventure',
'Crime',
'Thriller',
'Action',
'Drama',
'War',
'Action',
'Comedy',
'War',
'Comedy',
'Comedy',
'Romance',
'Drama',
'Romance',
'Comedy',
'Comedy',
'Romance',
'Comedy',
'Drama',
'Comedy',
'War',
'Action',
'Thriller',
'Drama',
'Comedy',
'Drama',
'Drama',
'Comedy',
'Action',
'Action',
'Adventure',
'Sci-Fi',
'Drama',
'Thriller',
'Thriller',
'Drama',
'Adventure',
"Children's",
'Action',
'Comedy',
'Comedy',
'Comedy',
'Western',
'Drama',
'Comedy',
'Thriller',
'Drama',
'Comedy',
'Mystery',
'Action',
'Crime',
'Drama',
'Action',
'Thriller',
'Drama',
'Comedy',
'Drama',
'Romance',
'Comedy',
'Romance',
'Drama',
'Romance',
'Comedy',
'Romance',
'Comedy',
'Drama',
'Action',
"Children's",
'Drama',
'Action',
'Sci-Fi',
'Comedy',
'Drama',
'Action',
'Drama',
'Drama',
'Drama',
'Romance',
'Drama',
'Action',
'Drama',
'Horror',
'Sci-Fi',
'Comedy',
'Mystery',
'Romance',
'Comedy',
'Drama',
'Comedy',
'Drama',
'War',
'Action',
'Drama',
'Mystery',
'Comedy',
'Sci-Fi',
'Thriller',
'Comedy',
'Crime',
'Thriller',
'Action',
'Drama',
'Drama',
'Drama',
'Drama',
'Drama',
'Drama',
'War',
'Drama',
'Drama',
'Drama',
"Children's",
'Drama',
'Comedy',
'Crime',
'Horror',
'Action',
'Drama',
'Romance',
'Drama',
'Drama',
'Comedy',
'Drama',
'Drama',
'Comedy',
'Romance',
'Thriller',
'Film-Noir',
'Sci-Fi',
'Comedy',
'Comedy',
'Romance',
'Thriller',
'Action',
'Drama',
'Action',
'Adventure',
"Children's",
'Sci-Fi',
'Action',
'Adventure',
'Thriller',
'Action',
'Documentary',
'Comedy',
'Romance',
"Children's",
'Comedy',
'Musical',
'Action',
'Adventure',
'Comedy',
'Western',
'Thriller',
'Action',
'Crime',
'Romance',
'Documentary',
'Drama',
'Action',
'Adventure',
'Animation',
"Children's",
'Fantasy',
'Comedy',
'Drama',
'Thriller',
'Comedy',
'Drama',
'Drama',
'Comedy',
'Horror',
'Comedy',
'Romance',
'Drama',
'Comedy',
'Drama',
"Children's",
'Comedy',
'Comedy',
'Drama',
'Drama',
'Drama',
'Drama',
'Comedy',
'Drama',
"Children's",
'Comedy',
'Comedy',
'Adventure',
"Children's",
'Drama',
'Mystery',
'Thriller',
'Drama',
'Documentary',
'Comedy',
'Comedy',
'Drama',
'Drama',
'Comedy',
"Children's",
'Comedy',
'Comedy',
'Romance',
'Thriller',
'Animation',
"Children's",
'Comedy',
'Musical',
'Action',
'Sci-Fi',
'Thriller',
'Adventure',
...]
genres=pd.unique(all_genres)
genres
array(['Animation', "Children's", 'Comedy', 'Adventure', 'Fantasy',
'Romance', 'Drama', 'Action', 'Crime', 'Thriller', 'Horror',
'Sci-Fi', 'Documentary', 'War', 'Musical', 'Mystery', 'Film-Noir',
'Western'], dtype=object)
zero_matrix = np.zeros((len(movies), len(genres)))
dummies = pd.DataFrame(zero_matrix, columns=genres)
gen=movies.genres[0]
gen.split("|")
['Animation', "Children's", 'Comedy']
dummies.columns.get_indexer(gen.split('|'))
array([0, 1, 2], dtype=int64)
for i, gen in enumerate(movies.genres):
indices = dummies.columns.get_indexer(gen.split('|'))
dummies.iloc[i, indices] = 1
movies_windic = movies.join(dummies.add_prefix('Genre_'))
movies_windic.iloc[0]
movie_id 1
title Toy Story (1995)
genres Animation|Children's|Comedy
Genre_Animation 1.0
Genre_Children's 1.0
Genre_Comedy 1.0
Genre_Adventure 0.0
Genre_Fantasy 0.0
Genre_Romance 0.0
Genre_Drama 0.0
Genre_Action 0.0
Genre_Crime 0.0
Genre_Thriller 0.0
Genre_Horror 0.0
Genre_Sci-Fi 0.0
Genre_Documentary 0.0
Genre_War 0.0
Genre_Musical 0.0
Genre_Mystery 0.0
Genre_Film-Noir 0.0
Genre_Western 0.0
Name: 0, dtype: object
mnames = ['movie_id', 'title', 'genres']
movies = pd.read_table('F:/项目学习/利用Pyhon进行数据分析(第二版)/利用Pyhon进行数据分析/pydata-book-2nd-edition/datasets/movielens/movies.dat', sep='::', header=None, names=mnames,encoding='ISO-8859-1')
movies[:10]
C:\Users\Dell\AppData\Local\Temp\ipykernel_26068\3411970987.py:2: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.
movies = pd.read_table('F:/项目学习/利用Pyhon进行数据分析(第二版)/利用Pyhon进行数据分析/pydata-book-2nd-edition/datasets/movielens/movies.dat', sep='::', header=None, names=mnames,encoding='ISO-8859-1')
|
movie_id |
title |
genres |
0 |
1 |
Toy Story (1995) |
Animation|Children's|Comedy |
1 |
2 |
Jumanji (1995) |
Adventure|Children's|Fantasy |
2 |
3 |
Grumpier Old Men (1995) |
Comedy|Romance |
3 |
4 |
Waiting to Exhale (1995) |
Comedy|Drama |
4 |
5 |
Father of the Bride Part II (1995) |
Comedy |
5 |
6 |
Heat (1995) |
Action|Crime|Thriller |
6 |
7 |
Sabrina (1995) |
Comedy|Romance |
7 |
8 |
Tom and Huck (1995) |
Adventure|Children's |
8 |
9 |
Sudden Death (1995) |
Action |
9 |
10 |
GoldenEye (1995) |
Action|Adventure|Thriller |
dummies_demo = movies['genres'].str.get_dummies('|')
prefix = 'genre_'
dummies_demo = dummies_demo.add_prefix(prefix)
merged_df = pd.concat([movies, dummies_demo], axis=1)
merged_df
|
movie_id |
title |
genres |
genre_Action |
genre_Adventure |
genre_Animation |
genre_Children's |
genre_Comedy |
genre_Crime |
genre_Documentary |
... |
genre_Fantasy |
genre_Film-Noir |
genre_Horror |
genre_Musical |
genre_Mystery |
genre_Romance |
genre_Sci-Fi |
genre_Thriller |
genre_War |
genre_Western |
0 |
1 |
Toy Story (1995) |
Animation|Children's|Comedy |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
... |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
2 |
Jumanji (1995) |
Adventure|Children's|Fantasy |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
... |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
3 |
Grumpier Old Men (1995) |
Comedy|Romance |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
... |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
3 |
4 |
Waiting to Exhale (1995) |
Comedy|Drama |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
... |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
4 |
5 |
Father of the Bride Part II (1995) |
Comedy |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
... |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
3878 |
3948 |
Meet the Parents (2000) |
Comedy |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
... |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3879 |
3949 |
Requiem for a Dream (2000) |
Drama |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
... |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3880 |
3950 |
Tigerland (2000) |
Drama |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
... |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3881 |
3951 |
Two Family House (2000) |
Drama |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
... |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3882 |
3952 |
Contender, The (2000) |
Drama|Thriller |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
... |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
3883 rows × 21 columns
一个对统计应用有用的秘诀是:结合get_dummies和诸如cut之类的离散化函数
np.random.seed(12345)
values=np.random.rand(10)
values
array([0.92961609, 0.31637555, 0.18391881, 0.20456028, 0.56772503,
0.5955447 , 0.96451452, 0.6531771 , 0.74890664, 0.65356987])
bins= [0, 0.2, 0.4, 0.6, 0.8, 1]
pd.get_dummies(pd.cut(values,bins))
|
(0.0, 0.2] |
(0.2, 0.4] |
(0.4, 0.6] |
(0.6, 0.8] |
(0.8, 1.0] |
0 |
False |
False |
False |
False |
True |
1 |
False |
True |
False |
False |
False |
2 |
True |
False |
False |
False |
False |
3 |
False |
True |
False |
False |
False |
4 |
False |
False |
True |
False |
False |
5 |
False |
False |
True |
False |
False |
6 |
False |
False |
False |
False |
True |
7 |
False |
False |
False |
True |
False |
8 |
False |
False |
False |
True |
False |
9 |
False |
False |
False |
True |
False |
字符串操作
Python能够成为流行的数据处理语言,部分原因是其简单易用的字符串和文本处理
功能。
字符串对象方法
val = 'a,b, guido'
val.split(',')
['a', 'b', ' guido']
split常常与strip一起使用,以去除空白符(包括换行符):
pieces=[x.strip() for x in val.split(',')]
pieces
['a', 'b', 'guido']
first, second, third = pieces
first + '::' + second + '::' + third
'a::b::guido'
'::'.join(pieces)
'a::b::guido'
检测子串的最佳方式是利用Python的in关键字,还可
以使用index和find:
'guido' in val
True
val.index(',')
1
val.find(':')
-1
注意find和index的区别:如果找不到字符串,index将会引发一个异常(而不是返回
-1)
val.index(':')
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[88], line 1
----> 1 val.index(':')
ValueError: substring not found
count可以返回指定子串的出现次数
val.count(',')
2
replace用于将指定模式替换为另一个模式。通过传入空字符串,它也常常用于删除
val.replace(',','::')
'a::b:: guido'
val.replace(',','')
'ab guido'
Python内置的字符串方法
- count:返回在字符串中的出现次数(非重叠)
- endswith、startswith:返回字符串以某个后缀结尾(以某个前缀结尾),则返回True
- join:将字符串用作连接其他字符串序列的分隔符
- index:如果在字符串中找到子串,则返回子串第一个字符所在的位置,如果没有找到,则引发ValueError
- find: 如果在字符串中找到子串,则返回第一个发现子串第一个字符所在的位置,如果没有找到,返回-1
- rfind:如果在字符串中找到子串,则返回最后一个发现子串第一个字符所在的位置,如果没有找到,返回-1
- replace:用另一个字符替换指定字符
- strip.rstrip.lstrip:去除空白符(包括换行符)
- split:通过指定的分隔符将字符串拆分成一组子串
- lower、upper:大小写
- ljust、rjust:用空格(或其他字符)填充字符串的空白侧以返回符合最低宽度的字符串
正则表达式
re模块的函数可以分为三个大类:模式匹配、替换以及拆分
import re
text = "foo bar\t baz \tqux"
re.split('\s+',text)
['foo', 'bar', 'baz', 'qux']
可以用re.compile自己编译regex以得到一个可重用的regex对象
regex=re.compile('\s+')
regex.split(text)
['foo', 'bar', 'baz', 'qux']
regex.findall(text)
[' ', '\t ', ' \t']
match和search跟findall功能类似
text = """Dave [email protected]
Steve [email protected]
Rob [email protected]
Ryan [email protected]
"""
pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'
regex = re.compile(pattern, flags=re.IGNORECASE)
regex.findall(text)
['[email protected]', '[email protected]', '[email protected]', '[email protected]']
m = regex.search(text)
m
text[m.start():m.end()]
'[email protected]'
print(regex.match(text))
None
sub方法可以将匹配到的模式替换为指定字符串
print(regex.sub('REDACTED', text))
Dave REDACTED
Steve REDACTED
Rob REDACTED
Ryan REDACTED
pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'
regex = re.compile(pattern, flags=re.IGNORECASE)
m = regex.match('[email protected]')
m.groups()
('wesm', 'bright', 'net')
regex.findall(text)
[('dave', 'google', 'com'),
('steve', 'gmail', 'com'),
('rob', 'gmail', 'com'),
('ryan', 'yahoo', 'com')]
print(regex.sub(r'Username: \1, Domain: \2, Suffix: \3', text))
Dave Username: dave, Domain: google, Suffix: com
Steve Username: steve, Domain: gmail, Suffix: com
Rob Username: rob, Domain: gmail, Suffix: com
Ryan Username: ryan, Domain: yahoo, Suffix: com
正则表达式方法
- findall、finditer:返回字符串中所有的非重叠匹配模式。findall返回的是有所有模式组成的列表,而finditer则通过一个迭代器逐个返回
- match:从字符串起始位置匹配模式,还可以对模式各个部分进行分组。如果匹配到模式,则返回一个匹配项对象,否则返回None
- search:扫描整个字符串以匹配模式,如果找到则返回一个匹配项对象。跟match不同,其匹配项可以位于字符串的任意位置,而不仅仅是起始处
- split:根据找到的模式将字符串拆分成数段
- sub、subn:将字符串中所有的(sub)或前n个(subn)模式替换成指定表达式。在替换字符串中可以通过\1、\2等符号表示各分项组
pandas的矢量化字符串函数
清理待分析的散乱数据时,常常需要做一些字符串规整化工作。更为复杂的情况
是,含有字符串的列有时还含有缺失数据:
data = {'Dave': '[email protected]', 'Steve': '[email protected]','Rob': '[email protected]', 'Wes': np.nan}
data=pd.Series(data)
data
Dave [email protected]
Steve [email protected]
Rob [email protected]
Wes NaN
dtype: object
data.isnull()
Dave False
Steve False
Rob False
Wes True
dtype: bool
data.str.contains('gmail')
Dave False
Steve True
Rob True
Wes NaN
dtype: object
pattern
'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\\.([A-Z]{2,4})'
data.str.findall(pattern, flags=re.IGNORECASE)
Dave [(dave, google, com)]
Steve [(steve, gmail, com)]
Rob [(rob, gmail, com)]
Wes NaN
dtype: object
有两个办法可以实现矢量化的元素获取操作:要么使用str.get,要么在str属性上使
用索引:
matches = data.str.match(pattern, flags=re.IGNORECASE)
matches
Dave True
Steve True
Rob True
Wes NaN
dtype: object
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jxFV7MY2-1692080773017)(image.png)]