【源码解读】|SparkContext源码解读

【源码解读】|SparkContext源码解读

  • 导读
  • 须知
    • 一、 CallSite创建
      • 什么叫CallSite? CallSite有什么用?
    • 二、ActiveContext取舍
  • 正式篇
    • 一、读取SparkConf、日志压缩配置
    • 二、初始化LiveListenerBus
    • 三、创建SparkENV对象(DriverENV)
    • 四、初始化SparkStatusTracker
    • 五、初始化ConsoleProgressBar
    • 六、创建&初始化 Spark UI
    • 七、ExecutorMemory配置
    • 八、注册HeartbeatReceiver
    • 九、创建TaskScheduler
    • 十、创建&启动DAGScheduler
    • 十一、初始化BlockManager
    • 十二、初始化MericsSystem
    • 十三、创建EventLoggingListener
    • 十四、创建&启动资源划分管理器
    • 十五、创建ContextCleaner
    • 十六、ExtraListeners配置
    • 十七、环境更新
    • 十八、投递程序启动事件
    • 十九、最后绑定注册
    • 二十、结束清理
  • 总结

导读

本文针对于Spark2.4系列分析

/**
 * Main entry point for Spark functionality. A SparkContext represents the connection to a Spark
 * cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster.
 *  Spark功能的主要入口点。 SparkContext表示与Spark集群的连接,可用于在该集群上创建RDD,累加器和广播变量。
 *
 * Only one SparkContext may be active per JVM.  You must `stop()` the active SparkContext before
 * creating a new one.  This limitation may eventually be removed; see SPARK-2243 for more details.
 * 每个JVM只能激活一个SparkContext。在创建新的SparkContext之前,您必须“停止()”活动的SparkContext。
 * 此限制可能最终会消除;有关更多详细信息,请参见SPARK-2243
 *
 * @param config a Spark Config object describing the application configuration. Any settings in
 *   this config overrides the default configs as well as system properties.
 *   传入参数config是一个描述应用程序配置的Spark Config对象。此配置中的任何设置都会覆盖默认配置以及系统属性
 */

【源码解读】|SparkContext源码解读_第1张图片

须知

一、 CallSite创建

什么叫CallSite? CallSite有什么用?

/** CallSite represents a place in user code. It can have a short and a long form. */
CallSite表示用户代码中的一个位置。它可以有短的和长的形式。(最短栈、最长栈)
private[spark] case class CallSite(shortForm: String, longForm: String)

源码中通过getCallSite() 方法配置返回CallSite

参数示意:

参数英文名 参数含义
lastSparkMethod 方法存入
firstUserFile 类名存入
firstUserLine 行号存入

源码如下:

 def getCallSite(skipClass: String => Boolean = sparkInternalExclusionFunction): CallSite = {
    // Keep crawling up the stack trace until we find the first function not inside of the spark
    // package. We track the last (shallowest) contiguous Spark method. This might be an RDD
    // transformation, a SparkContext function (such as parallelize), or anything else that leads
    // to instantiation of an RDD. We also track the first (deepest) user method, file, and line.
    var lastSparkMethod = ""
    var firstUserFile = ""
    var firstUserLine = 0
    var insideSpark = true
    val callStack = new ArrayBuffer[String]() :+ ""

    Thread.currentThread.getStackTrace().foreach { ste: StackTraceElement =>
      // When running under some profilers, the current stack trace might contain some bogus
      // frames. This is intended to ensure that we don't crash in these situations by
      // ignoring any frames that we can't examine.
      if (ste != null && ste.getMethodName != null
        && !ste.getMethodName.contains("getStackTrace")) {
        if (insideSpark) {
          if (skipClass(ste.getClassName)) {
            lastSparkMethod = if (ste.getMethodName == "") {
              // Spark method is a constructor; get its class name
              ste.getClassName.substring(ste.getClassName.lastIndexOf('.') + 1)
            } else {
              ste.getMethodName
            }
            callStack(0) = ste.toString // Put last Spark method on top of the stack trace.
          } else {
            if (ste.getFileName != null) {
              firstUserFile = ste.getFileName
              if (ste.getLineNumber >= 0) {
                firstUserLine = ste.getLineNumber
              }
            }
            callStack += ste.toString
            insideSpark = false
          }
        } else {
          callStack += ste.toString
        }
      }
    }

    val callStackDepth = System.getProperty("spark.callstack.depth", "20").toInt
    val shortForm =
      if (firstUserFile == "HiveSessionImpl.java") {
        // To be more user friendly, show a nicer string for queries submitted from the JDBC
        // server.
        "Spark JDBC Server Query"
      } else {
        s"$lastSparkMethod at $firstUserFile:$firstUserLine"
      }
    val longForm = callStack.take(callStackDepth).mkString("\n")

    CallSite(shortForm, longForm)
  }

客户端结果:

举例:WordCount例子中,获得数据如下
  最短栈:SparkContext at MyWorkCount.scala:7
  最长栈:org.apache.spark.SparkContext.(SparkContext.scala:76)
  		        com.spark.MyWorkCount$.main(MyWorkCount.scala:7)
		        com.spark.MyWorkCount.main(MyWorkCount.scala)

二、ActiveContext取舍

// If true, log warnings instead of throwing exceptions when multiple SparkContexts are active
  // 如果为true,则在多个SparkContext处于活动状态时记录警告而不是引发异常  默认false
  private val allowMultipleContexts: Boolean =
    config.getBoolean("spark.driver.allowMultipleContexts", false)

  // In order to prevent multiple SparkContexts from being active at the same time, mark this
  // context as having started construction.
  // NOTE: this must be placed at the beginning of the SparkContext constructor.
  // 为了防止同时激活多个SparkContext,将此上下文标记为active。以防止多个SparkContext实例同时成为active级别的。
  SparkContext.markPartiallyConstructed(this, allowMultipleContexts)

  val startTime = System.currentTimeMillis()

  private[spark] val stopped: AtomicBoolean = new AtomicBoolean(false)

  //断言存活的SparkCntext
  private[spark] def assertNotStopped(): Unit = {
    if (stopped.get()) {
      val activeContext = SparkContext.activeContext.get()
      val activeCreationSite =
        if (activeContext == null) {
          "(No active SparkContext.)"
        } else {
          activeContext.creationSite.longForm
        }
      throw new IllegalStateException(
        s"""Cannot call methods on a stopped SparkContext.
           |This stopped SparkContext was created at:
           |
           |${creationSite.longForm}
           |
           |The currently active SparkContext was created at:
           |
           |$activeCreationSite
         """.stripMargin)
    }
  }

正式篇

一、读取SparkConf、日志压缩配置

Spark配置类,配置已键值对形式存储,封装了一个ConcurrentHashMap类实例settings用于存储Spark的配置信息。

 	//copy一份配置文件
 	_conf = config.clone()
 	//必要信息检查,验证提交配置项参数、提交方式 
    _conf.validateSettings()
	 //检查部署模式spark.master配置
    if (!_conf.contains("spark.master")) { 
      throw new SparkException("A master URL must be set in your configuration")
    }
    //检查spark.app.name配置
    if (!_conf.contains("spark.app.name")) {  
      throw new SparkException("An application name must be set in your configuration")
    }

    // log out spark.app.name in the Spark driver logs 打印应用程序名称
    logInfo(s"Submitted application: $appName")

    // System property spark.yarn.app.id must be set if user code ran by AM on a YARN cluster
    // 如果用户代码由AM在YARN群集上运行,则必须设置系统属性spark.yarn.app.id
    if (master == "yarn" && deployMode == "cluster" && !_conf.contains("spark.yarn.app.id")) {
      throw new SparkException("Detected yarn cluster mode, but isn't running on a cluster. " +
        "Deployment to YARN is not supported directly by SparkContext. Please use spark-submit.")
    }
    // 检查日志配置
    if (_conf.getBoolean("spark.logConf", false)) {
      logInfo("Spark configuration:\n" + _conf.toDebugString)
    }

    // Set Spark driver host and port system properties. This explicitly sets the configuration
    // instead of relying on the default value of the config constant.
    // 设置Spark驱动程序主机和端口系统属性。这将显式设置配置而不依赖于config常量的默认值
    _conf.set(DRIVER_HOST_ADDRESS, _conf.get(DRIVER_HOST_ADDRESS))
    _conf.setIfMissing("spark.driver.port", "0")

    _conf.set("spark.executor.id", SparkContext.DRIVER_IDENTIFIER)
	//获取用户传入jar包
	//在YARN模式下,它将返回一个空列表,因为YARN 具有自己的分发jar的机制。
    _jars = Utils.getUserJars(_conf)  
    //获取用户传入的文件
    _files = _conf.getOption("spark.files").map(_.split(",")).map(_.filter(_.nonEmpty))
      .toSeq.flatten  
	//事件日志目录
    _eventLogDir =    
      if (isEventLogEnabled) {
        val unresolvedDir = conf.get("spark.eventLog.dir", EventLoggingListener.DEFAULT_LOG_DIR)
          .stripSuffix("/")
        Some(Utils.resolveURI(unresolvedDir))
      } else {
        None
      }
	//事件日志压缩 默认flase不压缩
    _eventLogCodec = {   
      val compress = _conf.getBoolean("spark.eventLog.compress", false)
      if (compress && isEventLogEnabled) {
        Some(CompressionCodec.getCodecName(_conf)).map(CompressionCodec.getShortName)
      } else {
        None
      }
    }

二、初始化LiveListenerBus

SparkContext 中的事件总线,可以接收各种使用方的事件,并且异步传递Spark事件监听与SparkListeners监听器的注册。

	//创建生命周期监听总线
    _listenerBus = new LiveListenerBus(_conf) 

    // Initialize the app status store and listener before SparkEnv is created so that it gets
    // all events.
    // 在创建SparkEnv之前 初始化 应用程序状态存储 和 侦听器,以便获取所有事件
    _statusStore = AppStatusStore.createLiveStore(conf)
    listenerBus.addToStatusQueue(_statusStore.listener.get)

三、创建SparkENV对象(DriverENV)

SparkContext中非常重要的类,它维护着Spark的执行环境,所有的线程都可以通过SparkContext访问到同一个SparkEnv对象。包含一些rpc创建……etc.

LiveListenerBus 生命周期监听总线

 	// Create the Spark execution environment (cache, map output tracker, etc)
    // 创建SparkEev 执行环境(cache, map输出追踪器, 等等)
    _env = createSparkEnv(_conf, isLocal, listenerBus)
    SparkEnv.set(_env)
	// If running the REPL, register the repl's output dir with the file server.
	//REPL-> “读取-求值-输出”循环(英语:Read-Eval-Print Loop,简称REPL)指的是一个简单的,交互式的编程环境
    // 如果运行REPL,请向文件服务器注册repl的输出目录。
    _conf.getOption("spark.repl.class.outputDir").foreach { path =>
      val replUri = _env.rpcEnv.fileServer.addDirectory("/classes", new File(path))
      _conf.set("spark.repl.class.uri", replUri)
    }
 --------------------------------------------------------------------------
 private[spark] def createSparkEnv(
      conf: SparkConf,
      isLocal: Boolean,
      listenerBus: LiveListenerBus): SparkEnv = {
    SparkEnv.createDriverEnv(conf, isLocal, listenerBus, SparkContext.numDriverCores(master, conf))
  }

四、初始化SparkStatusTracker

低级别的状态报告API,只能提供非常脆弱的一致性机制,对Job(作业)、Stage(阶段)的状态进行监控。

	//用于监视job和stage的进度
	//注意SparkStatusTracker中API提供非常弱的一致性语义,在Active阶段中有可能返回'None'
    _statusTracker = new SparkStatusTracker(this, _statusStore) 

五、初始化ConsoleProgressBar

进度条 [stage1]====================>

	//说白了就是console print的那个线。。。。。。
	_progressBar =  
      if (_conf.get(UI_SHOW_CONSOLE_PROGRESS) && !log.isInfoEnabled) {
        Some(new ConsoleProgressBar(this))
      } else {
        None
      }
     --------------------------------------------------------------------
    private def show(now: Long, stages: Seq[StageData]) {
    val width = TerminalWidth / stages.size
    val bar = stages.map { s =>
      val total = s.numTasks
      val header = s"[Stage ${s.stageId}:"
      val tailer = s"(${s.numCompleteTasks} + ${s.numActiveTasks}) / $total]"
      val w = width - header.length - tailer.length
      val bar = if (w > 0) {
        val percent = w * s.numCompleteTasks / total
        (0 until w).map { i =>
          if (i < percent) "=" else if (i == percent) ">" else " "
        }.mkString("")
      } else {
        ""
      }
      header + bar + tailer
    }.mkString("")

    // only refresh if it's changed OR after 1 minute (or the ssh connection will be closed
    // after idle some time)
    if (bar != lastProgressBar || now - lastUpdateTime > 60 * 1000L) {
      System.err.print(CR + bar)
      lastUpdateTime = now
    }
    lastProgressBar = bar
  }

六、创建&初始化 Spark UI

Spark监控的web平台,提供了整个生命周期的监控包括任务、环境。

	//是否允许UI开启
	_ui = 
      if (conf.getBoolean("spark.ui.enabled", true)) {
        Some(SparkUI.create(Some(this), _statusStore, _conf, _env.securityManager, appName, "",
          startTime))
      } else {
        // For tests, do not enable the UI
        None
      }
    // Bind the UI before starting the task scheduler to communicate
    // the bound port to the cluster manager properly
    // 在启动任务计划程序以将绑定的端口正确通信到集群管理器之前,先绑定UI
    _ui.foreach(_.bind())
	//默认生成hadoop配置
    _hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(_conf) 

    // Add each JAR given through the constructor
    // jar和file添加
    if (jars != null) {
      jars.foreach(addJar)
    }

    if (files != null) {
      files.foreach(addFile)
    }

七、ExecutorMemory配置

	// executor内存 根据以下属性逐级查找 如果都没有的话最后使用1024MB
    _executorMemory = _conf.getOption("spark.executor.memory")
      .orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY")))
      .orElse(Option(System.getenv("SPARK_MEM"))
      .map(warnSparkMem))
      .map(Utils.memoryStringToMb)
      .getOrElse(1024)

    // Convert java options to env vars as a work around
    // since we can't set env vars directly in sbt.
    for { (envKey, propKey) <- Seq(("SPARK_TESTING", "spark.testing"))
      value <- Option(System.getenv(envKey)).orElse(Option(System.getProperty(propKey)))} {
      executorEnvs(envKey) = value
    }
    Option(System.getenv("SPARK_PREPEND_CLASSES")).foreach { v =>
      executorEnvs("SPARK_PREPEND_CLASSES") = v
    }
    // The Mesos scheduler backend relies on this environment variable to set executor memory.
    // Mesos调度程序后端依赖于此环境变量来设置执行程序内存。
    // TODO: Set this only in the Mesos scheduler.
    executorEnvs("SPARK_EXECUTOR_MEMORY") = executorMemory + "m"
    executorEnvs ++= _conf.getExecutorEnv
    executorEnvs("SPARK_USER") = sparkUser

八、注册HeartbeatReceiver

心跳接收器,所有 Executor 都会向HeartbeatReceiver 发送心跳,当其接收到 Executor 的心跳信息后,首先更新 Executor 的最后可见时间,然后将此信息交给 TaskScheduler 进一步处理。

	// We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will
    // retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)
    // 我们需要在“ createTaskScheduler”之前注册“ HeartbeatReceiver”,
    // 因为执行器将在构造函数中检索“ HeartbeatReceiver”。 (SPARK-6640)
    _heartbeatReceiver = env.rpcEnv.setupEndpoint(
      HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))

九、创建TaskScheduler

Spark任务调度器,负责任务的提交,并且请求集群管理器对任务调度。由于它调度的Task是有DagScheduler创建,所以DagScheduler是它的前置调度器。

 	val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
    _schedulerBackend = sched
    _taskScheduler = ts

十、创建&启动DAGScheduler

一个基于Stage的调度器, 负责创建 Job,将 DAG 中的 RDD 划分到不同的 Stage,并将Stage作为Tasksets提交给底层调度器TaskScheduler执行。

	//创建DAGScheduler 传入当前SparkContext对象,然后又去取出taskScheduler
	// def this(sc: SparkContext) = this(sc, sc.taskScheduler)
 	_dagScheduler = new DAGScheduler(this)  
    //绑定心跳执行器                              
    _heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet) 

    // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's constructor
    // 在taskScheduler在DAGScheduler的构造函数中设置DAGScheduler引用之后,初始化TaskScheduler
    _taskScheduler.start()

    _applicationId = _taskScheduler.applicationId()
    _applicationAttemptId = taskScheduler.applicationAttemptId()
    _conf.set("spark.app.id", _applicationId)
    if (_conf.getBoolean("spark.ui.reverseProxy", false)) {
      System.setProperty("spark.ui.proxyBase", "/proxy/" + _applicationId)
    }
    _ui.foreach(_.setAppId(_applicationId)) // 啪啪啪一丢设置后  UI和任务关联

十一、初始化BlockManager

在DAGShceduler中有一个BlockManagerMaster对象,该对象的工作就是负责管理全局所有BlockManager的元数据,当集群中有BlockManager注册完成的时候,其会向BlockManagerMaster发送自己元数据信息;BlockManagerMaster会为BlockManager创建一个属于这个BlockManager的BlockManagerInfo,用于存放BlockManager的信息。

 _env.blockManager.initialize(_applicationId)

十二、初始化MericsSystem

Spark webui 监控指标。包括Shuffle read/wirte gc…etc。spark运行时监控。

	// The metrics system for Driver need to be set spark.app.id to app ID.
    // So it should start after we get app ID from the task scheduler and set spark.app.id.
     // 需要将驱动程序的指标系统设置为spark.app.id到应用程序ID。
     // 因此,它应该在我们从任务计划程序获取应用程序ID并设置spark.app.id之后开始。
    //启动指标监控系统 gc时间,shuffler read/write...etc.
    _env.metricsSystem.start()
    
    // Attach the driver metrics servlet handler to the web ui after the metrics system is started.
    // 启动指标系统后,将驱动程序指标servlet处理程序附加到Web ui。
    _env.metricsSystem.getServletHandlers.foreach(handler => ui.foreach(_.attachHandler(handler)))

十三、创建EventLoggingListener

事件监听器将各种事件进行json转换

 //创建事件日志监听 添加到总线列队中去(总线列队后面会详细讲~~~)
 _eventLogger = 
      if (isEventLogEnabled) {
        val logger =
          new EventLoggingListener(_applicationId, _applicationAttemptId, _eventLogDir.get,
            _conf, _hadoopConfiguration)
        logger.start()
        listenerBus.addToEventLogQueue(logger)
        Some(logger)
      } else {
        None
      }

十四、创建&启动资源划分管理器

根据配置判断是否开启动态资源管理器

	// Optionally scale number of executors dynamically based on workload. Exposed for testing.
    // 可以根据工作负载动态伸缩执行器的数量spark.dynamicAllocation.enabled
    val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)
    _executorAllocationManager =
      if (dynamicAllocationEnabled) {
        schedulerBackend match {
          case b: ExecutorAllocationClient =>
            Some(new ExecutorAllocationManager(
              schedulerBackend.asInstanceOf[ExecutorAllocationClient], listenerBus, _conf,
              _env.blockManager.master))
          case _ =>
            None
        }
      } else {
        None
      }
    _executorAllocationManager.foreach(_.start())

十五、创建ContextCleaner

上下文清理器,为RDD、shuffle、broadcast状态的异步清理器,清理超出应用范围的RDD、ShuffleDependency、Broadcast对象。

	//根据spark.cleaner.referenceTracking 默认是true 创建ContextCleaner
	_cleaner =  
      if (_conf.getBoolean("spark.cleaner.referenceTracking", true)) {
        Some(new ContextCleaner(this))
      } else {
        None
      }
    _cleaner.foreach(_.start())

十六、ExtraListeners配置

	setupAndStartListenerBus()

十七、环境更新

postEnvironmentUpdate()
---------------------------------------------------------------
//环境更新,这个就是在UI Environment界面显示的数据
private def postEnvironmentUpdate() {
    if (taskScheduler != null) {
      val schedulingMode = getSchedulingMode.toString
      val addedJarPaths = addedJars.keys.toSeq
      val addedFilePaths = addedFiles.keys.toSeq
      val environmentDetails = SparkEnv.environmentDetails(conf, schedulingMode, addedJarPaths,
        addedFilePaths)
      val environmentUpdate = SparkListenerEnvironmentUpdate(environmentDetails)
      listenerBus.post(environmentUpdate)
    }
  }

十八、投递程序启动事件

postApplicationStart()
--------------------------------------------------------------
 //主要关注post方法,发送事件。同样关注start() stop()
 private def postApplicationStart() {
    // Note: this code assumes that the task scheduler has been initialized and has contacted
    // the cluster manager to get an application ID (in case the cluster manager provides one).
    listenerBus.post(SparkListenerApplicationStart(appName, Some(applicationId),
      startTime, sparkUser, applicationAttemptId, schedulerBackend.getDriverLogUrls))
  }

十九、最后绑定注册

	//关注postStartHook
 	_taskScheduler.postStartHook()
    _env.metricsSystem.registerSource(_dagScheduler.metricsSource)
    _env.metricsSystem.registerSource(new BlockManagerSource(_env.blockManager))
    _executorAllocationManager.foreach { e =>
      _env.metricsSystem.registerSource(e.executorAllocationManagerSource)

二十、结束清理

	// Make sure the context is stopped if the user forgets about it. This avoids leaving
    // unfinished event logs around after the JVM exits cleanly. It doesn't help if the JVM
    // is killed, though.
    // 如果用户忘记上下文,请确保上下文已停止。这样可以避免在JVM干净退出之后
    // 保留未完成的事件日志。但是,如果杀死了JVM 则无济于事
   logDebug("Adding shutdown hook") 
    _shutdownHookRef = ShutdownHookManager.addShutdownHook(
      ShutdownHookManager.SPARK_CONTEXT_SHUTDOWN_PRIORITY) { () =>
      logInfo("Invoking stop() from shutdown hook")
      try {
        stop()
      } catch {
        case e: Throwable =>
          logWarning("Ignoring Exception while stopping SparkContext from shutdown hook", e)
      }
    }
  } catch {
    case NonFatal(e) =>
      logError("Error initializing SparkContext.", e)
      try {
        stop()
      } catch {
        case NonFatal(inner) =>
          logError("Error stopping SparkContext after init error.", inner)
      } finally {
        throw e
      }
  }

总结

  • Spark 中的组件很多,涉及网络通信、分布式、消息、存储、计算、缓存、测量、清理、文件服务、Web UI 的方方面面。
  • Spark中大量采用事件监听方式,实现driver端的组件之间的通信。

欢迎关注公众号: 857Hub
【源码解读】|SparkContext源码解读_第2张图片

你可能感兴趣的:(Spark,Core,Spark,大数据,Spark源码,SparkContext)