- 深度学习中高斯噪声:为什么以及如何使用
小白学视觉
深度学习人工智能
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达来源:DeepHubIMBA本文约1800字,建议阅读8分钟高斯噪声是深度学习中用于为输入数据或权重添加随机性的一种技术。在数学上,高斯噪声是一种通过向输入数据添加均值为零和标准差(σ)的正态分布随机值而产生的噪声。正态分布,也称为高斯分布,是一种连续概率分布,由其概率密度函数(PDF)定义:pdf(x)=(1/(σ*sqrt(
- [rk3588]Linux下docker运行安卓镜像
于山巅相见
#驱动调试实例linuxdockerandroiddebian
关于在Linux下docker运行Android拿来挂机玩游戏一类的一直感觉很有意思,后面就在网上搜集了一下资料,资料有点少且乱,总的尝试下来也踩了不少的坑,这里我记录一下我部署的过程,有感兴趣的朋友可以直接拿去用。1.环境介绍开发板:ArmSoM-sige7Kernel:5.10.160OS:Debian11开源docker镜像:redroid2.内核配置RK发布的LinuxSDK默认不支持do
- 配置cri-docker使kubernetes1.24以docker作为运行时
萌褚
Linux
镜像下载、域名解析、时间同步请点击阿里云开源镜像站从kubernetes1.24开始,dockershim已经从kubelet中移除,但因为历史问题docker却不支持kubernetes主推的CRI(容器运行时接口)标准,所以docker不能再作为kubernetes的容器运行时了,即从kubernetesv1.24开始不再使用docker了。但是如果想继续使用docker的话,可以在kubel
- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- 算法学习019 BFS实现迷踪步 c++算法学习 中小学算法思维学习 比赛算法题解 信奥算法解析
小兔子编程
信奥算法详解算法宽度优先BFSC++BFS广度优先算法c++迷宫步数c++迷踪步
C++BFS实现迷踪步一、题目要求1、编程实现有一个n行m列的方格迷宫,用0表示可以通过,用1表示不可以通过,每一步可以向上、下、左、右任意方向移动一格,请计算从左上角(1,1)位置移动到右下角(n,m)位置,最少移动多少步?2、输入输出输入描述:第一行输入矩阵大小n和m
- 软件工程 案例分析作业
SoftwareTeacher
编程语言人工智能javapython大数据
现代软件工程构建之法作业https://bbs.csdn.net/forums/SoftwareEngineering?typeId=1723软件工程作业案例分析很多同学有疑惑:软件工程课是否就是枯燥的理论课?或者是几个牛人拼命写代码,其他人抱大腿的课?要不然就是学习一个程序语言,练习某个框架,搞一个职业培训的课?都不对!软件工程有理论,有实践,更重要的是分析,思辨,总结。在课程中,同学们自己组织
- 理解inode
zhanshenyn
linuxtableunixfile存储user
inode是一个重要概念,是理解Unix/Linux文件系统和硬盘储存的基础。我觉得,理解inode,不仅有助于提高系统操作水平,还有助于体会Unix设计哲学,即如何把底层的复杂性抽象成一个简单概念,从而大大简化用户接口。下面就是我的inode学习笔记,尽量保持简单。===================================理解inode作者:阮一峰一、inode是什么?理解inode
- gRPC协议简介
xidianhuihui
golang
gRPC是谷歌开源的一套RPC协议框架。主要做两件事情:一是数据编码,二是请求映射。数据编码数据编码顾名思义就是在将请求的内存对像转化成可以传输的字节流发给服务端,并将收到的字节流再转化成内存对像。方法有很多,常见的有XML、JSON、Protobuf。XML已经日薄西山,JSON风头正盛,Protobuf则方兴未艾。gRPC默认选用Protobuf,早期貌似只支持Protobuf,现在号称也支持
- 【机器学习】必会降维算法之:多维缩放(MDS)
Carl_奕然
机器学习算法人工智能
多维缩放(MDS)1、引言2、多维缩放(MDS)2.1定义2.2应用场景2.3核心原理2.4实现方式2.5算法公式2.6代码示例3、总结1、引言小鱼:最近小屌丝在休假,难得的清闲,我这也闲言少叙,书归正传,咱就聊一聊降为算法之:多维缩放(MDS)在机器学习和数据科学领域,多维缩放(MultidimensionalScaling,简称MDS)是一种常用的降维技术。它能够在尽可能保留原始数据点间距离的
- docker builds not a command
Zack Snyder
dockereureka容器运维云原生
我整理的一些关于【Docker】的项目学习资料(附讲解~~)和大家一起分享、学习一下:https://d.51cto.com/xltfov理解Docker和构建过程中的命令问题:处理“dockerbuildsnotacommand”错误Docker是一种流行的容器化技术,它允许开发者将应用程序及其所有依赖项打包到一个标准化的单元(容器)中,确保应用在任何环境中都能一致地运行。然而,在使用Docke
- 智能推理的革命:DeepSeek-R1 深度解析其算法与实现
步子哥
算法人工智能
在人工智能(AI)领域,语言模型(LargeLanguageModels,LLMs)正以惊人的速度发展,变得越来越智能,能够理解和生成复杂的语言内容。然而,尽管现有的模型在许多任务上表现出色,它们在深度推理和逻辑思维方面仍有显著的提升空间。DeepSeek-R1的出现,正是为了解决这一问题,通过强化学习(ReinforcementLearning,RL)赋予语言模型更强大的推理能力,开创了LLMs
- fuadmin
jcsx
开源学习djangovue.js
fu-admin-web采用VUE3,TS开发。fu-admin-backend采用Python,Django和Django-Ninija开发。数据库支持MySql,SqlServer,Sqlite。前端采用VbenAdmin、Vue3、AntDesignVue。后端采用Python语言Django框架以及强大的DjangoNinja。支持加载动态权限菜单,多方式轻松权限控制。Vue2项目移步
- 转帖-在Eclipse中开发JSF
ren_z_q
JSFEclipseBeanJSPOracle
(转自http://www.blogjava.net/gaofeng/articles/127842.html作者:Java.net)Eclipse3.3刚刚发布,正在学习JSF,于是使用Eclipse3.3做了一个JSF的Demo,很简单,主要是页面的跳转、组件和Bean的绑定等基础...1、工具准备:Eclipse3.3WTP2.0(最好下载一个all-in-one的版本..省的麻烦)...依
- Swagger自动文档工具以及gin-swagger的使用
百川Cs
Go工程化后端golangginci/cd
什么是Swagger?Swagger是一个开源的API设计和文档工具,旨在帮助开发者更高效地设计、构建、记录和测试RESTfulAPI。它基于OpenAPI规范(前身为Swagger规范),通过自动化的方式生成交互式API文档、客户端SDK和服务端代码,从而简化了API的开发和维护工作。核心功能自动生成API文档:Swagger能够通过解析代码中的注解或配置文件,自动生成API文档,包括接口路径、
- package.json依赖包漏洞之yargs-Parser输入验证错误漏洞
漏洞安全
背景有个安全扫描的流水线,扫描了负责的项目之后,发现一些漏洞。需要说明的是,这个扫描只是针对package.json文件。扫的是依赖树,而不是项目源代码,也不是打包后的代码。但既然是漏洞,都是可以好好学习下的。yargs-Parser输入验证错误漏洞(CVE-2020-7608)被扫描出来的是下面这样的:详情请查看:package.json依赖包漏洞之yargs-Parser输入验证错误漏洞
- package.json依赖包漏洞之nodejs-glob-parent正则表达式拒绝服务漏洞
漏洞安全前端
背景有个安全扫描的流水线,扫描了负责的项目之后,发现一些漏洞。需要说明的是,这个扫描只是针对package.json文件,扫的是依赖树,而不是项目源代码,也不是打包后的代码。但既然是漏洞,都是可以好好学习下的。nodejs-glob-parent正则表达式拒绝服务漏洞(CVE-2020-28469)被扫描出来的是下面这样的:从阿里云漏洞库中可以知道具体是什么漏洞。CVE-2020-28469漏洞的
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- 如何在 Ubuntu 20.04 或 22.04 上安装 Python 3
百川Cs
计算机基础ubuntupythonlinuxpipconda
以下是关于如何在Ubuntu20.04或22.04上安装Python3的详细步骤。Python是一种广泛使用的编程语言,适用于自动化、数据分析、机器学习等领域。Ubuntu系统通常预装了Python3,但如果需要安装或升级到最新版本,可以按照以下方法操作。检查系统是否已安装Python3打开终端(快捷键:Ctrl+Alt+T)。输入以下命令检查是否已安装Python3:python3--versi
- 【Java学习】从0到1掌握行为抽象与Lambda表达式:分区的深度解析与实战指南
墨瑾轩
一起学学Java【二】java学习开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣从0到1掌握行为抽象与Lambda表达式:分区的深度解析与实战指南!引言在现代编程中,行为抽象和Lambda表达式是提高代码可读性和灵活性的重要工具。特别是在Java8引入的流(Stream)API和分区功能,更是让处理集合数据变得简单而优雅。今天,我们就一起
- Pywinauto 快速学习指南
口_天_光健
microsoftpythonwindows自动化
Pywinauto技术指南一、基础概念(一)控件(Widgets)在Windows应用程序中,控件是用户界面的基本组成部分,如按钮、文本框、下拉列表等。Pywinauto提供了方法来识别和操作这些控件。(二)应用程序(Applications)代表正在运行的Windows应用程序。可以使用Pywinauto启动、连接和操作应用程序。(三)窗口(Windows)应用程序中的窗口是用户与之交互的界面。
- 咱们继续学Java——高级篇 第二百五十五篇:之Java进阶之本地方法:Windows注册表访问代码的终极解读
一杯年华@编程空间
咱们继续学java高级篇mavenjava-eespringbootspringcloudhibernatetomcat
咱们继续学Java——高级篇第二百五十五篇:之Java进阶之本地方法:Windows注册表访问代码的终极解读在Java学习的道路上,我们不断追求代码理解的深度,每一次对复杂代码的终极解读都是成长的重要里程碑。我写这篇博客的目的,就是希望与大家一同深入剖析Java本地方法中访问Windows注册表的剩余关键代码,助力大家在Java与其他语言交互编程领域掌握最核心的技能。今天,我们将详细解读Win32
- Hibernate不是过时了么?SpringDataJpa又是什么?和Mybatis有什么区别?
芝士汉堡 ིྀིྀ
mybatishibernatespring
一、前言ps:大三下学期,拿到了一份实习。进入公司后发现用到的技术栈有SpringDataJpa\Hibernate,但对于持久层框架我只接触了Mybatis\Mybatis-Plus,所以就来学习一下SpringDataJpa。1.回顾MyBatis来自官方文档的介绍:MyBatis是一款优秀的持久层框架,它支持定制化SQL、存储过程以及高级映射。MyBatis避免了几乎所有的JDBC代码和手动
- 深度学习|表示学习|卷积神经网络|由参数共享引出的特征图|08
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:FeatureMap(特征图)的概念与ParameterSharing(参数共享)密切相关。换句话说,参数共享是生成FeatureMap的基础。FeatureMap是卷积操作的核心产物,而卷积操作的高效性正是由参数共享带来的。下面我们详细看一下FeatureMap和ParameterSharing之间的关系:1.什么是FeatureMap?定义:FeatureMap是卷积操作生成的输出结
- PySide6与PyQt5的区别
大乔乔布斯
pyqtpythonqt
虽然PySide6和PyQt5的功能和API十分相似,但由于它们分别是基于不同版本的Qt和由不同的团队维护,是两个不同的Python绑定库,分别用于与Qt库进行交互,可能会在一些细节上表现出差异,一些关键区别:1.维护和授权PySide6:由TheQtCompany官方维护。使用LGPL授权,这意味着你可以在开源和闭源项目中免费使用它(遵守LGPL条款)。版本号与Qt本身一致,PySide6对应于
- 移动应用开发技术 架构图
彭乙肱
移动应用相关视频讲解:AIGC和微信的辅助学习移动应用开发技术架构图移动应用开发技术架构图是移动应用程序员必备的工具之一。它展示了一个应用程序的各个部分如何相互交互,以及它们之间的关系。在这篇文章中,我们将简要介绍移动应用开发技术架构图的基本概念,并使用代码示例来说明其重要性。架构图的重要性移动应用开发技术架构图对于理解一个应用程序的整体设计和功能至关重要。它可以帮助开发人员更好地组织代码,减少代
- Vue企业开发实战——学习心得
sienn
vue.js前端javascript
一、Vue.js简介Vue.js是一个渐进式JavaScript框架,用于构建用户界面。它与其他大型框架的不同之处在于,Vue被设计为可以自底向上逐层应用。Vue的核心库只关注视图层,不仅易于上手,也便于与第三方库或已有项目整合。二、环境配置安装Node.js和npm:Vue.js的开发需要使用Node.js和npm(Node包管理器)。可以从Node.js的官网下载并安装Node.js,它会自动
- KNOWLEDGE UNLEARNING FOR MITIGATING PRIVACY RISKS IN LANGUAGE MODELS
绒绒毛毛雨
语言模型人工智能自然语言处理
文章目录摘要1引言2相关工作2.1语言模型的隐私方法2.2机器去学习2.3语言模型中的记忆3语言模型中的知识去学习3.1方法论3.2量化语言模型的隐私风险4实验4.1模型、数据集和配置4.2主要实验4.3知识去学习的分析5结论摘要预训练语言模型(LMs)在初始预训练过程中记忆了大量知识,包括可能侵犯个人隐私和身份的信息。以往针对语言模型隐私问题的研究主要集中在数据预处理和差分隐私方法上,这两者都需
- 数据挖掘中的关联规则--面向频繁项集的A-Priori算法
绒绒毛毛雨
大数据挖掘算法数据挖掘python
文章目录一、频繁项集与关联规则学习1.实体与关系2.支持度与频繁项集3.关联规则二、寻找频繁项集1.频繁项集发现的挑战三角矩阵项对计数值的三元组存储方法2.频繁项集的单调性3.面向项对的A-Priori算法4.PCY算法哈希表创建第二遍扫描5、多阶段算法6、多哈希算法7、随机化算法8、SON算法9、Toivonen算法三、频繁项集小实践:消费者购买记录模拟数据示例具体问题分析一、频繁项集与关联规则
- 探秘FreeMovie:一个开源的电影推荐系统
孟振优Harvester
探秘FreeMovie:一个开源的电影推荐系统去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的开源电影推荐系统,由pojiezhiyuanjun开发并维护。该项目的目标是为用户提供个性化的电影推荐服务,通过机器学习算法理解用户的观影偏好,并据此进行智能推荐。技术分析FreeMovie的核心架构包括以下关键组件:数据处理-项目采用Hadoop进行大数据预处
- SpringBoot继承JWT token实现权限的验证(从头开始)
CodeGuruInk
springbootjava后端
目录概述前提:我们需要知道的文件的用处第1步:数据库的连接第2步:定义一个标准化响应对象的类第3步:编写请求数据库数据代码第4步:自定义异常处理第5步:导入依赖第6步:自定义拦截器第7步:配置拦截器第8步:生成token第9步:开始测试代码第10步:vue请求示例扩展:自定义注解AuthAccess总结概述在开发后端接口时,数据的直接暴露可能会导致安全问题。为了应对这种情况,我们需要在访问接口时进
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不