[数据结构]-AVL树

前言

作者:小蜗牛向前冲

名言:我可以接受失败,但我不能接受放弃

  如果觉的博主的文章还不错的话,还请点赞,收藏,关注支持博主。如果发现有问题的地方欢迎❀大家在评论区指正

目录

一、AVL树基本知识

1、概念

2、节点定义

3、插入

二、AVL树的旋转

1、右单旋

2、左单旋

 3、左右双旋

4、 右左双旋

三、AVL树的测试 

1、测试的补充代码

2、测试 


 本期学习目标:清楚什么是AVL树,模拟实现AVL树,理解四种旋转模型。 

一、AVL树基本知识

1、概念

       二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均 搜索长度

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

 [数据结构]-AVL树_第1张图片

2、节点定义

template
struct AVLTreeNode
{
	pair_kv;
	AVLTreeNode* _left;
	AVLTreeNode* _right;
	AVLTreeNode* _parent;

	int _bf;//balance factor

	//带参数的构造函数
	AVLTreeNode(const pair& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
	{}
};

这里我们定义了三叉链来定义节点,最为特殊的是我们相对于二叉树,我们多了一个平衡 因子,这是维持AVL特性的关键,下面我们将围绕此展开对AVL树的构建。

注意:平衡因子 = 右树的高度-左树的高度

3、插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:

1. 按照二叉搜索树的方式插入新节点

2. 调整节点的平衡因子

对于插入最为重要的是平衡因子的更新,下面我们将讨论更新平衡因子情况:

是否要在更新平衡因子,要根据子树的高度:
1、如果parent->_bf==0,者说明以前的parent->_bf==-1或者parent->_bf==1
即是以前是一边高一边低,现在是插入到矮的一边,树的高度不变,不更新

2、如果parent->_bf==-1或者parent->_bf==-1,者以前parent->_bf==0
即是以前树是均衡的,现在插入让一边高了
子树的高度变了,要向上更新

3 、如果parent->_bf==-2或者parent->_bf==2,者以前parent->_bf==-1或者parent->_bf==1
现在树严重不平衡,让树旋转维持结构

//插入
bool Insert(const pair& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;
	//找插入位置
	while (cur)
	{
		//插入元素大于比较元素
		if (cur->_kv.first < kv.first)
		{
			parent = cur;
			//继续往右树走
			cur = cur->_right;
		}
		else if (cur->_kv.first > kv.first)
		{
			parent = cur;
			//继续往左树走
			cur = cur->_left;
		}
		else//插入元素于树中元素相等,不插入
		{
			return false;
		}
	}

	cur = new Node(kv);
	//链接节点
	if (parent->_kv.first > kv.first)
	{
		parent->_left = cur;
		//更新parent
		cur->_parent = parent;
	}
	else
	{
		parent->_right = cur;
		//更新parent
		cur->_parent = parent;
	}

	//更新平衡因子
	while (parent)//parent为空,就更新到了根
	{
		//新增在树节点左边,parent->bf--
		//新增在树节点右边,parent->bf++
		if (cur == parent->_left)
		{
			parent->_bf--;
		}
		else
		{
			parent->_bf++;
		}

		//是否要在更新平衡因子,要根据子树的高度:
		//1、如果parent->_bf==0,者说明以前的parent->_bf==-1或者parent->_bf==1
		//即是以前是一边高一边低,现在是插入到矮的一边,树的高度不变,不更新

		//2、如果parent->_bf==-1或者parent->_bf==-1,者以前parent->_bf==0
		//即是以前树是均衡的,现在插入让一边高了
		//子树的高度变了,要向上更新

		//3 、如果parent->_bf==-2或者parent->_bf==2,者以前parent->_bf==-1或者parent->_bf==1
		//现在树严重不平衡,让树旋转维持结构

		//旋转:
		//1、让子树的高度差不差过1
		//2、旋转过程中也要保存搜索树结构
		//3、边更新平衡因子
		//4、让这课树的高度保存和之前一样(旋转结束,不影响上层结构)

		if (parent->_bf == 0)
		{
			break;
		}
		else if (parent->_bf == -1 || parent->_bf == 1)
		{
			cur = parent;
			parent = parent->_parent;

		}
		//旋转
		else if (parent->_bf == -2 || parent->_bf == 2)
		{
			//左单旋转
			if (parent->_bf == 2 && cur->_bf == 1)
			{
				RotateL(parent);
			}
			//右单旋
			else if (parent->_bf == -2 && cur->_bf == -1)
			{
				RotateR(parent);
			}
			//左右双旋
			else if (parent->_bf == -2 && cur->_bf == 1)
			{
				RotateLR(parent);
			}
			//右左双旋
			else if (parent->_bf == 2 && cur->_bf == -1)
			{
				RotateRL(parent);
			}
			else
			{
				assert(false);
			}
			//旋转完成,平衡因子已经更新跳出循环
			break;
		}
		else
		{
			assert(false);
		}
	}
}

二、AVL树的旋转

如果parent->_bf==-2或者parent->_bf==2,者以前parent->_bf==-1或者parent->_bf==1
现在树严重不平衡,让树旋转维持结构:

旋转的要求:

  • 让子树的高度差不差过1
  • 旋转过程中也要保存搜索树结构
  • 边更新平衡因子
  • 让这课树的高度保存和之前一样(旋转结束,不影响上层结构)

旋转的分类: 

  • 新节点插入较高左子树的左侧—左左:右单旋
  • 新节点插入较高右子树的右侧—右右:左单旋
  • 新节点插入较高左子树的右侧—左右:先左单旋再右单旋
  • 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

1、右单旋

对于可能出现右旋转的情况的子树是多样的

[数据结构]-AVL树_第2张图片

 这里我们可以根据需要进行右单旋转抽像图进行理解

[数据结构]-AVL树_第3张图片

[数据结构]-AVL树_第4张图片 

代码实现: 

//右单旋
void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	//b做60的右
	parent->_left = subLR;

	if (subLR)
	{
		subLR->_parent = parent;
	}

	Node* ppNode = parent->_parent;
	//60做30的右
	subL->_right = parent;
	parent->_parent = subL;
	//60就是以前的根节点
	if (ppNode == nullptr)
	{
		_root = subL;
		subL->_parent = ppNode;
	}
	else
	{
		//上层父节点的左边是子树的parent
		if (ppNode->_left == parent)
		{
			ppNode->_left = subL;
		}
		else
		{
			ppNode->_right = subL;
		}

		subL->_parent = ppNode;
	}
	//更新平衡因子
	parent->_bf = subL->_bf = 0;
}

2、左单旋

[数据结构]-AVL树_第5张图片

[数据结构]-AVL树_第6张图片 

代码实现:

 

void RotateL(Node * parent)
{
	Node* subR = parent->_right;//父节点的右子树
	Node* subRL = subR->_left;//右树的左树

	//让60左边链接到30的右边
	parent->_right = subRL;
	if (subRL)
	{
		subRL->_parent = parent;
	}

	Node* ppNode = parent->_parent;
	//让30变成60的左边
	subR->_left = parent;
	parent->_parent = subR;

	//subR就是根节点
	if (ppNode == nullptr)
	{
		_root = subR;
		_root->_parent = nullptr;
	}
	else
	{
		//上层父节点的左边是子树的parent
		if (ppNode->_left == parent)
		{
			ppNode->_left = subR;
		}
		else
		{
			ppNode->_right = subR;
		}

		//子树父节点和上层父节点链接
		subR->_parent = ppNode;
	}
	//更新平衡因子
	parent->_bf = subR->_bf = 0;
}

 3、左右双旋

对于双旋转来说:节点新增的位置不同,平衡因子最终也会不同,这里我们要进行分类讨论:

[数据结构]-AVL树_第7张图片[数据结构]-AVL树_第8张图片

[数据结构]-AVL树_第9张图片

对于双旋转来说,最为重要的平衡因子的更新。 

 代码实现:

//左右双旋
void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	//记录subLR的平衡因子
	int bf = subLR->_bf;
	RotateL(parent->_left);
	RotateR(parent);

	//根据不同情况更新平衡因子

	if (bf == 1)//在c点处新增(在subLR的右子树新增)
	{
		subLR->_bf = 0;
		parent->_bf = 0;
		subL->_bf = -1;
	}
	else if(bf == -1) // 在b点处新增(在subLR的左子树新增)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 1;
	}
	else if (bf == 0) //自己就是增点
	{
		subLR->_bf = 0;
		parent->_bf = 0;
		subL->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

4、 右左双旋

这里同样也要进行分类讨论:

[数据结构]-AVL树_第10张图片

[数据结构]-AVL树_第11张图片

[数据结构]-AVL树_第12张图片 

代码实现: 

//右左双旋
void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	//记录subLR的平衡因子
	int bf = subRL->_bf;
	RotateR (parent->_right);
	RotateL(parent);


	//根据不同情况更新平衡因子

	if (bf == 1)//在c点处新增(在subLR的右子树新增)
	{
		subR->_bf = 0;
		subRL->_bf = 0;
		parent->_bf = -1;
	}
	else if (bf == -1) // 在b点处新增(在subLR的左子树新增)
	{
		subR->_bf = 1;
		subRL->_bf = 0;
		parent->_bf = 0;
	}
	else if (bf == 0) //自己就是增点
	{
		subR->_bf = 0;
		subRL->_bf = 0;
		parent->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

三、AVL树的测试 

为了测试我们模拟实现的AVL树是否成功,还需要进行检查

1、测试的补充代码

树的高度:

int Height()
{
	return _Height(_root);
}
//求树的高度
int _Height(Node* root)
{
	//树高度为0
	if (root == nullptr)
	{
		return 0;
	}
	//递归求左树的高度
	int Lh = _Height(root->_left);
	//递归求右树的高度
	int Rh = _Height(root->_right);
	return  Lh > Rh ? Lh + 1 : Rh + 1;
}

检查平衡因子

	
		//检测平衡因子
		bool _IsBalance(Node* root)
		{
			if (root == nullptr)
			{
				return true;
			}

			int leftHeight = _Height(root->_left);
			int rightHeight = _Height(root->_right);

			if (rightHeight - leftHeight != root->_bf)
			{
				cout << root->_bf << endl;
				cout << rightHeight - leftHeight << endl;
				cout << root->_kv.first << "平衡因子异常" << endl;
				return false;
			}

			return abs(rightHeight - leftHeight) < 2
				&& _IsBalance(root->_left)
				&& _IsBalance(root->_right);
		}

中序遍历

	void InOrder()//这是为了解决在外面调用,不好传根的问题
	{
		_InOrder(_root);
	}
	//中序遍历
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;
		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

2、测试 

完整代码:

#pragma once
#include
#include

template
struct AVLTreeNode
{
	pair_kv;
	AVLTreeNode* _left;
	AVLTreeNode* _right;
	AVLTreeNode* _parent;

	int _bf;//balance factor

	//带参数的构造函数
	AVLTreeNode(const pair& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
	{}
};
template
struct AVLTree
{
	typedef AVLTreeNode Node;
public:
	//插入
	bool Insert(const pair& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		//找插入位置
		while (cur)
		{
			//插入元素大于比较元素
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				//继续往右树走
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				//继续往左树走
				cur = cur->_left;
			}
			else//插入元素于树中元素相等,不插入
			{
				return false;
			}
		}

		cur = new Node(kv);
		//链接节点
		if (parent->_kv.first > kv.first)
		{
			parent->_left = cur;
			//更新parent
			cur->_parent = parent;
		}
		else
		{
			parent->_right = cur;
			//更新parent
			cur->_parent = parent;
		}

		//更新平衡因子
		while (parent)//parent为空,就更新到了根
		{
			//新增在树节点左边,parent->bf--
			//新增在树节点右边,parent->bf++
			if (cur == parent->_left)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}

			//是否要在更新平衡因子,要根据子树的高度:
			//1、如果parent->_bf==0,者说明以前的parent->_bf==-1或者parent->_bf==1
			//即是以前是一边高一边低,现在是插入到矮的一边,树的高度不变,不更新

			//2、如果parent->_bf==-1或者parent->_bf==-1,者以前parent->_bf==0
			//即是以前树是均衡的,现在插入让一边高了
			//子树的高度变了,要向上更新

			//3 、如果parent->_bf==-2或者parent->_bf==2,者以前parent->_bf==-1或者parent->_bf==1
			//现在树严重不平衡,让树旋转维持结构

			//旋转:
 

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == -1 || parent->_bf == 1)
			{
				cur = parent;
				parent = parent->_parent;

			}
			//旋转
			else if (parent->_bf == -2 || parent->_bf == 2)
			{
				//左单旋转
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				//右单旋
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				//左右双旋
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				//右左双旋
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				else
				{
					assert(false);
				}
				//旋转完成,平衡因子已经更新跳出循环
				break;
			}
			else
			{
				assert(false);
			}
		}
	}
		void RotateL(Node * parent)
		{
			Node* subR = parent->_right;//父节点的右子树
			Node* subRL = subR->_left;//右树的左树

			//让60左边链接到30的右边
			parent->_right = subRL;
			if (subRL)
			{
				subRL->_parent = parent;
			}

			Node* ppNode = parent->_parent;
			//让30变成60的左边
			subR->_left = parent;
			parent->_parent = subR;

			//subR就是根节点
			if (ppNode == nullptr)
			{
				_root = subR;
				_root->_parent = nullptr;
			}
			else
			{
				//上层父节点的左边是子树的parent
				if (ppNode->_left == parent)
				{
					ppNode->_left = subR;
				}
				else
				{
					ppNode->_right = subR;
				}

				//子树父节点和上层父节点链接
				subR->_parent = ppNode;
			}
			//更新平衡因子
			parent->_bf = subR->_bf = 0;
		}
		//右单旋
		void RotateR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;

			//b做60的右
			parent->_left = subLR;

			if (subLR)
			{
				subLR->_parent = parent;
			}

			Node* ppNode = parent->_parent;
			//60做30的右
			subL->_right = parent;
			parent->_parent = subL;
			//60就是以前的根节点
			if (ppNode == nullptr)
			{
				_root = subL;
				subL->_parent = ppNode;
			}
			else
			{
				//上层父节点的左边是子树的parent
				if (ppNode->_left == parent)
				{
					ppNode->_left = subL;
				}
				else
				{
					ppNode->_right = subL;
				}

				subL->_parent = ppNode;
			}
			//更新平衡因子
			parent->_bf = subL->_bf = 0;
		}

		//左右双旋
		void RotateLR(Node* parent)
		{
			Node* subL = parent->_left;
			Node* subLR = subL->_right;

			//记录subLR的平衡因子
			int bf = subLR->_bf;
			RotateL(parent->_left);
			RotateR(parent);

			//根据不同情况更新平衡因子

			if (bf == 1)//在c点处新增(在subLR的右子树新增)
			{
				subLR->_bf = 0;
				parent->_bf = 0;
				subL->_bf = -1;
			}
			else if(bf == -1) // 在b点处新增(在subLR的左子树新增)
			{
				subLR->_bf = 0;
				subL->_bf = 0;
				parent->_bf = 1;
			}
			else if (bf == 0) //自己就是增点
			{
				subLR->_bf = 0;
				parent->_bf = 0;
				subL->_bf = 0;
			}
			else
			{
				assert(false);
			}
		}

		//右左双旋
		void RotateRL(Node* parent)
		{
			Node* subR = parent->_right;
			Node* subRL = subR->_left;

			//记录subLR的平衡因子
			int bf = subRL->_bf;
			RotateR (parent->_right);
			RotateL(parent);


			//根据不同情况更新平衡因子

			if (bf == 1)//在c点处新增(在subLR的右子树新增)
			{
				subR->_bf = 0;
				subRL->_bf = 0;
				parent->_bf = -1;
			}
			else if (bf == -1) // 在b点处新增(在subLR的左子树新增)
			{
				subR->_bf = 1;
				subRL->_bf = 0;
				parent->_bf = 0;
			}
			else if (bf == 0) //自己就是增点
			{
				subR->_bf = 0;
				subRL->_bf = 0;
				parent->_bf = 0;
			}
			else
			{
				assert(false);
			}
		}

		int Height()
		{
			return _Height(_root);
		}
		//求树的高度
		int _Height(Node* root)
		{
			//树高度为0
			if (root == nullptr)
			{
				return 0;
			}
			//递归求左树的高度
			int Lh = _Height(root->_left);
			//递归求右树的高度
			int Rh = _Height(root->_right);
			return  Lh > Rh ? Lh + 1 : Rh + 1;
		}
		bool IsAVLTree()
		{
			return _IsBalance(_root);
		}
		
		//检测平衡因子
		bool _IsBalance(Node* root)
		{
			if (root == nullptr)
			{
				return true;
			}

			int leftHeight = _Height(root->_left);
			int rightHeight = _Height(root->_right);

			if (rightHeight - leftHeight != root->_bf)
			{
				cout << root->_bf << endl;
				cout << rightHeight - leftHeight << endl;
				cout << root->_kv.first << "平衡因子异常" << endl;
				return false;
			}

			return abs(rightHeight - leftHeight) < 2
				&& _IsBalance(root->_left)
				&& _IsBalance(root->_right);
		}

		void InOrder()//这是为了解决在外面调用,不好传根的问题
		{
			_InOrder(_root);
		}
		//中序遍历
		void _InOrder(Node* root)
		{
			if (root == nullptr)
				return;
			_InOrder(root->_left);
			cout << root->_kv.first << ":" << root->_kv.second << endl;
			_InOrder(root->_right);
		}

private:
	Node* _root = nullptr;
};




void TestAVLTree1()
{
	//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	/*int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };*/
	int a[] = { 30,60,90 };
	AVLTree t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}

	t.InOrder();

	cout << t.IsAVLTree() << endl;
}
void TestAVLTree2()
{
	srand(time(0));
	const size_t N = 100000;
	AVLTree t;
	for (size_t i = 0; i < N; ++i)
	{
		size_t x = rand();
		t.Insert(make_pair(x, x));
		/*cout << t.IsAVLTree() << endl;*/
	}
	cout << t.IsAVLTree() << endl;
}
 

这里我们分别进行简单 TestAVLTree1()和用生成随机数字生成的数字进行测试TestAVLTree2()

如果成功就会打印1.

[数据结构]-AVL树_第13张图片

你可能感兴趣的:(数据结构,算法)