【LeetCode】199. 二叉树的右视图

一、题目描述

给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

示例:

输入: [1,2,3,null,5,null,4]
输出: [1, 3, 4]
解释:

   1            <---
 /   \
2     3         <---
 \     \
  5     4       <---

二、解题思路 & 代码

2.1 DFS

初步想法
由于树的形状无法提前知晓,不可能设计出优于 O(n) 的算法。因此,我们应该试着寻找线性时间解。带着这个想法,我们来考虑一些同等有效的方案。

思路
我们对树进行深度优先搜索,在搜索过程中,我们总是先访问右子树。那么对于每一层来说,我们在这层见到的第一个结点一定是最右边的结点。

算法
这样一来,我们可以存储在每个深度访问的第一个结点,一旦我们知道了树的层数,就可以得到最终的结果数组。

下图表示了问题的一个实例。红色结点自上而下组成答案,边缘以访问顺序标号
【LeetCode】199. 二叉树的右视图_第1张图片

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def rightSideView(self, root):
        rightmost_value_at_depth = dict() # 深度为索引,存放节点的值
        max_depth = -1

        stack = [[root, 0]]
        while stack:
            node, depth = stack.pop()

            if node is not None:
                # 维护二叉树的最大深度
                max_depth = max(max_depth, depth)

                # 如果不存在对应深度的节点我们才插入
                rightmost_value_at_depth.setdefault(depth, node.val)

                stack.append([node.left, depth+1])
                stack.append([node.right, depth+1])

        return [rightmost_value_at_depth[depth] for depth in range(max_depth+1)]

复杂度分析

  1. 时间复杂度 : O(n)。深度优先搜索最多访问每个结点一次,因此是线性复杂度。

  2. 空间复杂度 : O(n)。最坏情况下,栈内会包含接近树高度的结点数量,占用 O(n) 的空间。

2.2 BFS

思路

我们可以对二叉树进行层次遍历,那么对于每层来说,最右边的结点一定是最后被遍历到的。二叉树的层次遍历可以用广度优先搜索实现。

算法

执行广度优先搜索,左结点排在右结点之前,这样,我们对每一层都从左到右访问。因此,只保留每个深度最后访问的结点,我们就可以在遍历完整棵树后得到每个深度最右的结点。除了将栈改成队列,并去除了rightmost_value_at_depth之前的检查外,算法没有别的改动。
【LeetCode】199. 二叉树的右视图_第2张图片

from collections import deque

class Solution(object):
    def rightSideView(self, root):
        rightmost_value_at_depth = dict() # 深度为索引,存放节点的值
        max_depth = -1

        queue = deque([(root, 0)])
        while queue:
            node, depth = queue.popleft()

            if node is not None:
                # 维护二叉树的最大深度
                max_depth = max(max_depth, depth)

                # 由于每一层最后一个访问到的节点才是我们要的答案,因此不断更新对应深度的信息即可
                rightmost_value_at_depth[depth] = node.val

                queue.append((node.left, depth+1))
                queue.append((node.right, depth+1))

        return [rightmost_value_at_depth[depth] for depth in range(max_depth+1)]


复杂度分析

  1. 时间复杂度 : O(n)。 每个节点最多进队列一次,出队列一次,因此广度优先搜索的复杂度为线性。

  2. 空间复杂度 (n)。每个节点最多进队列一次,所以队列长度最大不不超过 n,所以这里的空间代价为 O(n)。

注释

deque 数据类型来自于collections 模块,支持从头和尾部的常数时间 append/pop 操作。若使用 Python 的 list,通过 list.pop(0) 去除头部会消耗 O(n)O(n) 的时间。

参考:

  1. LeetCode官方题解

你可能感兴趣的:(python,算法,数据结构,二叉树,队列,数据结构,算法,python)