- 【2024年华为OD机试】(A卷,100分)- 单向链表中间节点 (Java & JS & Python&C/C++)
妄北y
算法汇集笔记总结(保姆级)华为odjavajavascriptpythonc语言链表
一、问题描述题目描述求单向链表中间的节点值,如果奇数个节点取中间,偶数个取偏右边的那个值。输入描述第一行链表头节点地址后续输入的节点数n后续输入每行表示一个节点,格式节点地址节点值下一个节点地址(-1表示空指针)输入保证链表不会出现环,并且可能存在一些节点不属于链表。输出描述单向链表中间的节点值用例输入000104000003-1000105123091145160000012309711451输
- No.7十六届蓝桥杯备战|单目操作符|getchar|putchar(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯c++职场和发展
单⽬操作符前⾯介绍的操作符都是双⽬操作符,即有2个操作数。除此之外还有⼀些操作符只有⼀个操作数,被称为单⽬操作符。如++、–、+(正)、-(负)就是单⽬操作符。++和–++是⼀种⾃增的操作符,⼜分为前置++和后置++,–是⼀种⾃减的操作符,也分为前置–和后置–前置++或者后置++,都是让操作数⾃增1的前置–或者后置–,都是让操作数⾃减1的前置++和后置++//案例1intx=10;inta=++x
- DiffuEraser: 一种基于扩散模型的视频修复技术
扫地僧985
音视频
视频修复算法结合了基于流的像素传播与基于Transformer的生成方法,利用光流信息和相邻帧的信息来恢复纹理和对象,同时通过视觉Transformer完成被遮挡区域的修复。然而,这些方法在处理大范围遮挡时常常会遇到模糊和时序不一致的问题,这凸显了增强生成能力模型的重要性。近期,由于扩散模型在图像和视频生成方面展现出了卓越的性能,已成为一种重要的技术。在本文中,我们介绍了DiffuEraser,这
- python(scikit-learn)实现k均值聚类算法
嘿哈哈哈哈哈哈
机器学习聚类python算法机器学习人工智能
k均值聚类算法原理详解示例为链接中的例题直接调用python机器学习的库scikit-learn中k均值算法的相关方法fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotlib.pyplotaspltx=np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])#计算k均值聚类kmeans=KMeans(n_
- C# delegate 委托使用教程
c#.net
什么是委托?委托是定义方法签名的引用类型数据类型,可以定义委托的变量,就像其他数据类型一样,可以引用与委托具有相同签名的任何方法。它允许方法作为参数传递,并允许事件驱动编程。它们提供了一种以类型安全的方式封装方法引用的方法。委托是一种类型,类似于C++的函数指针,但更安全和灵活。委托可以存储对方法的引用(或者多个方法)。委托是实现事件和回调的基础。为什么使用委托?类型安全:委托提供一种类型安全的方
- Scikit-learn_聚类算法_K均值聚类
飞Link
Water算法机器学习人工智能
一.描述首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为:第一步将每个样本分配到距离最近的质心第二步根据每二个质心所有样本的平均值来创建新的质心二.用法和参数KMeans类MiniBatchKMeans类:是KMeans类的变种,他是用小批量来减少计算时间,而多个批次仍然尝试优化相同的目标函数。小批量是输入数据的子集,是每次训练迭代中的随机抽样。小批量大
- 《C++ 赋能 K-Means 聚类算法:开启智能数据分类之旅》
c++c#
在当今数字化浪潮汹涌澎湃的时代,人工智能无疑是引领科技变革的核心驱动力之一。而在人工智能的广袤天地中,数据分类与聚类作为挖掘数据内在价值、揭示数据潜在规律的关键技术手段,正发挥着前所未有的重要作用。K-Means聚类算法,作为数据聚类领域的经典之作,以其简洁高效的特性而备受瞩目。当我们将目光聚焦于C++这一强大而高效的编程语言时,会发现它与K-Means聚类算法的结合犹如天作之合,能够为数据处理与
- 《数据可视化新高度:Graphy的AI协作变革》
程序猿阿伟
信息可视化人工智能数据分析
在数据洪流奔涌的时代,企业面临的挑战不再仅仅是数据的收集,更在于如何高效地将数据转化为洞察,助力决策。Graphy作为一款前沿的数据可视化工具,凭借AI赋能的团队协作功能,为企业打开了数据协作新局面,重新定义了团队在数据领域的协同方式。智能角色分配,适配专长促协作Graphy利用AI算法,根据团队成员过往在数据项目中的表现、技能标签以及参与任务的类型,分析出每个成员在数据可视化流程中的优势。比如,
- Scikit-Learn K均值聚类
对许
#Python#人工智能与机器学习scikit-learn聚类机器学习
Scikit-LearnK均值聚类1、K均值聚类1.1、K均值聚类及原理1.2、K均值聚类的优缺点1.3、聚类与分类的区别2、Scikit-LearnK均值聚类2.1、Scikit-LearnK均值聚类API2.2、K均值聚类初体验(寻找最佳K)2.3、K均值聚类案例1、K均值聚类K-均值(K-Means)是一种聚类算法,属于无监督学习。K-Means在机器学习知识结构中的位置如下:1.1、K均值
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- 数据挖掘常用算法优缺点分析
天波烟客00
数据挖掘数据挖掘机器学习
领取机器学习视频教程:http://www.admin444.com/P-c8129a48常用的机器学习、数据挖掘方法有分类,回归,聚类,推荐,图像识别等。在实际应用中,一般都是采用启发式学习方式来实验。偏差&方差偏差:描述的是预测值(估计值)的期望与真实值之间的差距,偏差越大,越偏离真实数据。偏差bias其实是模型太简单而带来的估计不准确的部分---欠拟合方差:描述的是预测值的变化范围、离散程度
- Redis基础命令之set、zset
泪染的青空
redis数据库缓存
1.SetRedis的Set是String类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。1.1SADD--添加一个或多个成员这里添加三个成员到set集合中127.0.0.1:6379>SADDsetmysqljavac++(integer)31.2SMEMBERS--查看成员127.0.0.1:6379>SMEMBERSset1)"c++"2)"java"3)"mysql"
- 树莓派命令行配置wifi无线密码
张文君
phplinux服务器
这个是我测试过的可以使用用感叹号标记的是ok的命令okoksystemctllist-units--type=service|grep-inetwork查看附近wifi信号!!!nmclidevicewifilistnmclidevicewificonnect"你的Wi-Fi名称"password"你的Wi-Fi密码"!!!nmclidevicewificonnectbbbbbbbbpasswor
- Scikit-learn提供了哪些机器学习算法以及如何使用Scikit-learn进行模型训练和评估
Java资深爱好者
机器学习scikit-learn算法
Scikit-learn库的使用一、Scikit-learn提供的机器学习算法Scikit-learn(通常简称为sklearn)是一个广泛使用的Python机器学习库,它提供了多种用于数据挖掘和数据分析的算法。Scikit-learn支持的机器学习算法可以大致分为以下几类:分类算法:支持向量机(SVM)随机森林(RandomForest)逻辑回归(LogisticRegression)朴素贝叶斯
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- docker直接运行arm下的docker
张文君
dockerarm开发容器
运行环境是树莓派A+处理器是arm32v6安装了docker,运行lamp编译安装php的时候发现要按天来算,于是用电脑vm下的Ubuntu系统运行arm的docker然后打包到a+直接导入运行就可以了第一种方法sudoaptinstallqemu-user-static导入直接运行就可以了第二种方法运行arm的dockerwget-chttps://github.com/multiarch/qe
- 导电树脂胶
卓晴
科学-技术-探究mongodb数据库嵌入式硬件
导电胶水导电树脂胶水01导电树脂胶一、前言 这个导电树脂胶水是几年前购买的。现在已经过去了很长时间。 之前测量它的导通电阻非常大。 下面,再测量一下这个导电树脂的导电性能。二、测量结果 下面测试刚才涂抹在纸片上的导电树脂。可以看到似乎剩下的是一些碳粉形成的导电层。 利用数值万用表进行测量。 数字万用表可以测量20M欧姆以内的电阻。 可以看到导电数值图层的电阻大约为20k欧姆,并随着测量表笔靠近
- 数据结构:时间复杂度和空间复杂度
星迹日
数据结构数据结构时间空间复杂度算法
我们知道代码和代码之间算法的不同,一定影响了代码的执行效率,那么我们该如何评判算法的好坏呢?这就涉及到了我们算法效率的分析了。一、算法效率所谓算法效率的分析分为两种:第一种时间效率,又称时间复杂度。第二种空间效率,又称空间复杂度。其中,时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间。二、时间复杂度1、概念算法的时间复杂度其实是一个数学函数,它描述了该算法的运
- 数据结构——时间复杂度
Lamar Carpenter
数据结构计算机408考研数据结构
前言当你拿到一段代码时,你该如何判断这一段代码算法的好坏程度?有的人会说跑一下(运行一下),事后统计运行时间。当然这样确实能够直观的通过看运行程序所花费时间,但是这存在着一些问题:和机器性能有关超级计算机vs单片机(同样的一段代码一定是超级计算机运行的时间更快)和编程语言有关越高级的语言运行的效率越低编译程序产生的机器指令质量有关有些算法不能事后统计导弹控制算法(不能为了统计算法的效率发射一颗导弹
- 【中科院1区】Matlab实现黏菌优化算法SMA-RF锂电池健康状态估计算法研究
matlab科研助手
matlab算法开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍摘要锂离子电池作为一种重要的储能器件,在电动汽车、便携式电子设备等领域发挥着至关重要的
- JCR一区级 | Matlab实现蜣螂算法DBO-Transformer-LSTM多变量回归预测
Matlab机器学习之心
算法matlabtransformer
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:水质预测对于环境保护和资源管理至关重要。本文提出了一种基于蜣螂算法(DungBeetleOptimizer,DBO)、DBO-Transformer和LSTM的多变量水质回归预测模型,旨在提高水质参数
- 基于Lagrange-Newton法的SQP局部算法python实现
笛在月明
算法Pythonpython算法优化
序列二次规划(SQP)是解决约束优化问题中较好的一种算法,其流程为在实现算法的过程中,使用了scipy.optimize模块:scipy.optimize.minimize(fun,x0,args=(),method=None,jac=None,hess=None,hessp=None,bounds=None,constraints=(),tol=None,callback=None,option
- 全覆盖路径规划-精准细胞覆盖算法
码厂一粒沙
记录算法
今天,咱们来聊聊这个传统的精准细胞覆盖算法,算法的描述挺抽象的,这里尽量用易于理解的语言来讲解一下,它就像是给机器人安排一个任务,让它把一块地方仔仔细细地走一遍,下面详细说说它是怎么做的。整体思路想象你要打扫一个大房间,你得有个计划,知道先打扫哪块,再打扫哪块,最后把整个房间都打扫干净。精准细胞覆盖算法就是给机器人规划这样的“打扫路线”,让它能把给定的空间都走遍。具体步骤第一步:把空间“切块”并记
- c++揭秘2024春晚刘谦老师的魔术,快来看看吧
天若有情673
c++c++开发语言
封面:源码:#include#include#includeusingnamespacestd;structCard{intvalue;//用数字代表扑克牌,简化处理};//打印牌堆voidprintDeck(constvector&deck){for(auto&card:deck){cout&deck,intnameLength){rotate(deck.begin(),deck.begin()
- pythonocc安装_PythonOCC开发-如何搭建开发环境和一个创建圆台例子
weixin_39884100
pythonocc安装
我本来是打算学习C++OCC的,但是感觉C++太难了,虽然OpenCasCAD里面有个MFC的例子,但是我连一个开发环境都没搭建出来。后来知道有个老外把C++OCC封装成了PythonOCC,就打算去研究一下。虽然网上百度到了资料,但是我还是慢慢摸索到处问别人,搞了两个多小时才成功的把环境搭建起来。转载出处,学习资料https://blog.csdn.net/weixin_42755384/art
- Python获取能唯一确定一棵给定的树的最少数量的拓扑序列
weixin_30777913
数据结构python
称一个111~nnn的排列{p}={p1,p2,⋯ ,pn}\{p\}=\{p_1,p_2,\cdots,p_n\}{p}={p1,p2,⋯,pn}是一棵n个点、点编号为111至nnn的树TTT的拓扑序列,当且仅对于任意1≤iij>ij>i满足pip_ipi与pjp_jpj之间有连边。给定树TTT,你需要给出尽可能少的该树的拓扑序列{p1},{p2},⋯ ,{pk}\{p_1\},\{p_2\},
- 第 3 天:Actor 是什么?创建你的第一个游戏对象!
Bluesonli
UE5C++进阶之路:从零到独立开发3A级游戏!游戏ue5学习虚幻unrealengine虚幻引擎
目标:了解UnrealEngine5中的Actor,创建并操控你的第一个C++游戏对象!1️⃣什么是Actor?在UnrealEngine5中,Actor是游戏世界(World)中的基本对象,几乎所有的游戏元素(玩家、敌人、道具、灯光、摄像机等)都是Actor的子类。Actor的主要特点可放入关卡(Level)中可以拥有组件(Components)(如网格、灯光、声音等)支持脚本控制(C++/蓝图
- 【文本去重】通俗易懂理解Minhash算法
凌漪_
算法数据结构大模型
Minhash算法直观理解作者:@凌漪_@板烧鱼仔@Yuxn.背景Jaccard相似度两个集合A和B,我们关心它们的Jaccard相似度J(A,B)=∣A∪B∣∣A∩B∣J(A,B)=\frac{∣A∪B∣}{∣A∩B∣}J(A,B)=∣A∩B∣∣A∪B∣Jaccard相似度描述了两个集合之间的相似程度。使用场景1:两个文档之间的相似度。注意:jaccard相似度并没有提取文档的任何语义,只是在查
- 【Redis】Redis 经典面试题解析:深入理解 Redis 的核心概念与应用
阿猿收手吧!
#Redisredis数据库缓存
Redis是一个高性能的键值存储系统,广泛应用于缓存、消息队列、排行榜等场景。在面试中,Redis是一个高频话题,尤其是其核心概念、数据结构、持久化机制和高可用性方案。1.Redis是什么?它的主要特点是什么?答案:Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值存储系统。它支持多种数据结构(如字符串、哈希、列表、集合、有序集合等),并提供了丰富的操作命令。主
- 28岁开始零基础学前端,这些血的教训你一定要避免
2501_90336583
前端
写了一个Vue动态表单组件,发布到NPM上。模仿Vue1.0版本写了一个MiniVue,这让我对Vue的理解达到了源码级别。写了几篇关于Vue的文章。计算机理论知识计算机理论知识决定了一个程序员的天花板(在国内还得加上英语)。数据结构与算法算法看了《剑指offer题解》、《Leetcode题解》这两本书,还是挺有用的,也有刷到的题面试正好碰上了的。编译原理、计算机原理由于编译原理和计算机原理是看的
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理