随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等。
Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块。
import random
下面介绍下Python内置的random模块的几种生成随机数的方法。
1、random.random() 随机生成 0 到 1 之间的浮点数[0.0, 1.0)。注意的是返回的随机数可能会是 0 但不可能为 1,即左闭右开的区间。
print("random: ", random.random())
2、random.randint(a , b) 随机生成 a 与 b 之间的整数[a, b],a<=n<=b,随机整数不包含 b 时[a, b)可以使用 random.randrange() 方法。
print("randint: ", random.randint(6,8))
3、random.randrange(start,stop,step) 按步长step随机在上下限范围内取一个随机数,start<=n 4、random.uniform(a, b) 随机生成 a 与 b 之间的浮点数[a, b],a<=n<=b。 5、random.choice() 从列表中随机取出一个元素,比如列表、元祖、字符串等。注意的是,该方法需要参数非空,否则会抛出 IndexError 的错误。 6、random.shuffle(items) 把列表 items 中的元素随机打乱。注意的是,如果不想修改原来的列表,可以使用 copy 模块先拷贝一份原来的列表。 7、random.sample(items, n)从列表 items 中随机取出 n 个元素。 Python 的random模块产生的随机数其实是伪随机数,依赖于特殊算法和指定不确定因素(种子seed)来实现。如randint方法生成一定范围内的随机数,会先指定一个特定的seed,将seed通过特定的随机数产生算法,得到一定范围内随机分布的随机数。因此对于同一个seed值的输入产生的随机数会相同,省略参数则意味着使用当前系统时间秒数作为种子值,达到每次运行产生的随机数都不一样。 numpy库也提供了random模块,用于生成多维度数组形式的随机数。使用时需要导入numpy库。 下面介绍下numpy库的random模块的几种生成随机数的方法。 **1、numpy.random.rand(d0,d1,…,dn) rand函数根据给定维度生成[0,1]之间的数据,包含0,不包含1 dn表格每个维度 返回值为指定维度的array 2、numpy.random.randn(d0,d1,…,dn) randn函数返回一个或一组样本,具有标准正态分布。 dn表格每个维度 返回值为指定维度的array 标准正态分布—-standard normal distribution 标准正态分布又称为u分布,是以0为均值、以1为标准差的正态分布,记为N(0,1)。 3、numpy.random.randint(low, high=None, size=None, dtype=’l’) 返回随机整数,范围区间为[low,high),包含low,不包含high 参数: low为最小值,high为最大值,size为数组维度大小,dtype为数据类型,默认的数据类型是np.int high没有填写时,默认生成随机数的范围是[0,low] 4、numpy.random.seed() np.random.seed()的作用: 使得随机数据可预测。 当我们设置相同的seed,每次生成的随机数相同。 如果不设置seed,则每次会生成不同的随机数 感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。 一、Python所有方向的学习路线 Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。 二、Python必备开发工具 工具都帮大家整理好了,安装就可直接上手! 三、最新Python学习笔记 当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。 四、Python视频合集 观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 五、实战案例 纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。 六、面试宝典print("randrange: ",random.randrange(20,100,5))
print("uniform: ",random.uniform(5,10))
print("choice: ",random.choice("www.yuanxiao.net"))
num = [1, 2, 3, 4, 5]
random.shuffle(num)
print("shuffle: ",num)
num = [1, 2, 3, 4, 5]
print("sample: ",random.sample(num, 3))
random.seed(2)
print("random: ", random.random())
random.seed(3)
print("random: ", random.random())
random.seed(3)
print("random: ", random.random())
import numpy as np
**
print("np.random.rand:\n {}".format(np.random.rand(4,2)))
"""
np.random.rand:
[[0.5488135 0.71518937]
[0.60276338 0.54488318]
[0.4236548 0.64589411]
[0.43758721 0.891773 ]]
"""
print("np.random.rand:\n {}".format(np.random.rand(4,3,2)))
"""
np.random.rand:
[[[0.96366276 0.38344152]
[0.79172504 0.52889492]
[0.56804456 0.92559664]]
[[0.07103606 0.0871293 ]
[0.0202184 0.83261985]
[0.77815675 0.87001215]]
[[0.97861834 0.79915856]
[0.46147936 0.78052918]
[0.11827443 0.63992102]]
[[0.14335329 0.94466892]
[0.52184832 0.41466194]
[0.26455561 0.77423369]]]
"""
print("np.random.randn:\n {}".format(np.random.randn()))
"""
np.random.randn:
2.2697546239876076
"""
print("np.random.randn:\n {}".format(np.random.randn(2,4)))
"""
np.random.randn:
[[-1.45436567 0.04575852 -0.18718385 1.53277921]
[ 1.46935877 0.15494743 0.37816252 -0.88778575]]
"""
print("np.random.randn:\n {}".format(np.random.randn(4,3,2)))
"""
np.random.randn:
[[[-1.98079647 -0.34791215]
[ 0.15634897 1.23029068]
[ 1.20237985 -0.38732682]]
[[-0.30230275 -1.04855297]
[-1.42001794 -1.70627019]
[ 1.9507754 -0.50965218]]
[[-0.4380743 -1.25279536]
[ 0.77749036 -1.61389785]
[-0.21274028 -0.89546656]]
[[ 0.3869025 -0.51080514]
[-1.18063218 -0.02818223]
[ 0.42833187 0.06651722]]]
"""
print("np.random.randint:\n {}".format(np.random.randint(1,size=5)))
"""
np.random.randint:
[0 0 0 0 0]
"""
print("np.random.randint:\n {}".format(np.random.randint(1,5)))
"""
np.random.randint:
2
"""
print("np.random.randint:\n {}".format(np.random.randint(-5,5,size=(2,2))))
"""
np.random.randint:
[[-5 -3]
[ 2 -3]]
"""
简历模板
若有侵权,请联系删除