分库分表场景&策略

原文地址:https://www.jianshu.com/p/3f8395402f58

数据库瓶颈

不管是 IO 瓶颈还是 CPU 瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载的活跃连接数的阈值。

在业务 Service 来看, 就是可用数据库连接少甚至无连接可用,接下来就可以想象了(并发量、吞吐量、崩溃)。

IO 瓶颈

第一种:磁盘读 IO 瓶颈,热点数据太多,数据库缓存放不下,每次查询会产生大量的 IO,降低查询速度→分库和垂直分表。

第二种:网络 IO 瓶颈,请求的数据太多,网络带宽不够→分库。

CPU 瓶颈

第一种:SQL 问题:如 SQL 中包含 join,group by,order by,非索引字段条件查询等,增加 CPU 运算的操作→SQL 优化,建立合适的索引,在业务 Service 层进行业务计算。

第二种:单表数据量太大,查询时扫描的行太多,SQL 效率低,增加 CPU 运算的操作→水平分表。

分库分表

水平分库

概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。

结果:

每个库的结构都一样

每个库中的数据不一样,没有交集

所有库的数据并集是全量数据

场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库的情况下。

分析:库多了,IO 和 CPU 的压力自然可以成倍缓解。

水平分表

概念:以字段为依据,按照一定策略(hash、range 等),讲一个表中的数据拆分到多个表中。

结果:

每个表的结构都一样。

每个表的数据不一样,没有交集,所有表的并集是全量数据。

场景:系统绝对并发量没有上来,只是单表的数据量太多,影响了 SQL 效率,加重了 CPU 负担,以至于成为瓶颈,可以考虑水平分表。

分析:单表的数据量少了,单次执行 SQL 执行效率高了,自然减轻了 CPU 的负担。

垂直分库

概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中

结果:

每个库的结构都不一样。

每个库的数据也不一样,没有交集。

所有库的并集是全量数据。

场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块的情况下。

分析:到这一步,基本上就可以服务化了。例如:随着业务的发展,一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再者,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。

垂直分表

概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表中(主表和扩展表)。

结果:

每个表的结构不一样。

每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据。

所有表的并集是全量数据。

场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大,以至于数据库缓存的数据行减少,查询时回去读磁盘数据产生大量随机读 IO,产生 IO 瓶颈。

分析:

可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能经常会查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表,这样更多的热点数据就能被缓存下来,进而减少了随机读 IO。拆了之后,要想获取全部数据就需要关联两个表来取数据。但记住千万别用 Join,因为 Join 不仅会增加 CPU 负担并且会将两个表耦合在一起(必须在一个数据库实例上)。关联数据应该在 Service 层进行,分别获取主表和扩展表的数据,然后用关联字段关联得到全部数据。

分库分表带来的问题

事务一致性问题

①分布式事务

当更新内容同时存在于不同库找那个,不可避免会带来跨库事务问题。跨分片事务也是分布式事务,没有简单的方案,一般可使用“XA 协议”和“两阶段提交”处理。

分布式事务能最大限度保证了数据库操作的原子性。但在提交事务时需要协调多个节点,推后了提交事务的时间点,延长了事务的执行时间,导致事务在访问共享资源时发生冲突或死锁的概率增高。

随着数据库节点的增多,这种趋势会越来越严重,从而成为系统在数据库层面上水平扩展的枷锁。

②最终一致性

对于那些性能要求很高,但对一致性要求不高的系统,往往不苛求系统的实时一致性,只要在允许的时间段内达到最终一致性即可,可采用事务补偿的方式。

与事务在执行中发生错误立刻回滚的方式不同,事务补偿是一种事后检查补救的措施,一些常见的实现方法有:对数据进行对账检查,基于日志进行对比,定期同标准数据来源进行同步等。

跨节点关联查询 Join 问题

切分之前,系统中很多列表和详情表的数据可以通过 Join 来完成,但是切分之后,数据可能分布在不同的节点上,此时 Join 带来的问题就比较麻烦了,考虑到性能,尽量避免使用 Join 查询。

解决的一些方法:

①全局表

全局表,也可看做“数据字典表”,就是系统中所有模块都可能依赖的一些表,为了避免库 Join 查询,可以将这类表在每个数据库中都保存一份。这些数据通常很少修改,所以不必担心一致性的问题。

②字段冗余

一种典型的反范式设计,利用空间换时间,为了性能而避免 Join 查询。

例如,订单表在保存 userId 的时候,也将 userName 也冗余的保存一份,这样查询订单详情顺表就可以查到用户名 userName,就不用查询买家 user 表了。

但这种方法适用场景也有限,比较适用依赖字段比较少的情况,而冗余字段的一致性也较难保证。

③数据组装

在系统 Service 业务层面,分两次查询,第一次查询的结果集找出关联的数据 id,然后根据 id 发起器二次请求得到关联数据,最后将获得的结果进行字段组装。这是比较常用的方法。

④ER 分片

关系型数据库中,如果已经确定了表之间的关联关系(如订单表和订单详情表),并且将那些存在关联关系的表记录存放在同一个分片上,那么就能较好地避免跨分片 Join 的问题。

可以在一个分片内进行 Join,在 1:1 或 1:n 的情况下,通常按照主表的 ID 进行主键切分。

跨节点分页、排序、函数问题

跨节点多库进行查询时,会出现 limit 分页、order by 排序等问题。

分页需要按照指定字段进行排序,当排序字段就是分页字段时,通过分片规则就比较容易定位到指定的分片;当排序字段非分片字段时,就变得比较复杂。

需要先在不同的分片节点中将数据进行排序并返回,然后将不同分片返回的结果集进行汇总和再次排序。

上图只是取第一页的数据,对性能影响还不是很大。但是如果取得页数很大,情况就变得复杂的多。

因为各分片节点中的数据可能是随机的,为了排序的准确性,需要将所有节点的前N页数据都排序好做合并,最后再进行整体排序,这样的操作很耗费 CPU 和内存资源,所以页数越大,系统性能就会越差。

在使用 Max、Min、Sum、Count 之类的函数进行计算的时候,也需要先在每个分片上执行相应的函数,然后将各个分片的结果集进行汇总再次计算。

全局主键避重问题

在分库分表环境中,由于表中数据同时存在不同数据库中,主键值平时使用的自增长将无用武之地,某个分区数据库自生成 ID 无法保证全局唯一。

因此需要单独设计全局主键,避免跨库主键重复问题。这里有一些策略:

①UUID

UUID 标准形式是 32 个 16 进制数字,分为 5 段,形式是 8-4-4-4-12 的 36 个字符。

UUID 是最简单的方案,本地生成,性能高,没有网络耗时,但是缺点明显,占用存储空间多。

另外作为主键建立索引和基于索引进行查询都存在性能问题,尤其是 InnoDb 引擎下,UUID 的无序性会导致索引位置频繁变动,导致分页。

②结合数据库维护主键 ID 表

CREATETABLE`sequence`(`id`bigint(20)unsignedNOTNULLauto_increment,`stub`char(1)NOTNULLdefault'',PRIMARYKEY(`id`),UNIQUEKEY`stub`(`stub`))ENGINE=MyISAM;

stub 字段设置为唯一索引,同一 stub 值在 sequence 表中只有一条记录,可以同时为多张表生成ID。

使用 MyISAM 引擎而不是 InnoDb,已获得更高的性能。MyISAM 使用的是表锁,对表的读写是串行的,所以不用担心并发时两次读取同一个 ID。

当需要全局唯一的 ID 时,执行:

REPLACE INTO sequence(stub)VALUES('a');SELECTLAST_INSERT_ID();

此方案较为简单,但缺点较为明显:存在单点问题,强依赖 DB,当 DB 异常时,整个系统不可用。配置主从可以增加可用性。另外性能瓶颈限制在单台 MySQL 的读写性能。

另有一种主键生成策略,类似 sequence 表方案,更好的解决了单点和性能瓶颈问题。

这一方案的整体思想是:建立 2 个以上的全局 ID 生成的服务器,每个服务器上只部署一个数据库,每个库有一张 sequence 表用于记录当前全局 ID。

表中增长的步长是库的数量,起始值依次错开,这样就能将 ID 的生成散列到各个数据库上。

这种方案将生成 ID 的压力均匀分布在两台机器上,同时提供了系统容错,第一台出现了错误,可以自动切换到第二台获取 ID。

但有几个缺点:系统添加机器,水平扩展较复杂;每次获取 ID 都要读取一次 DB,DB 的压力还是很大,只能通过堆机器来提升性能。

③Snowflake 分布式自增 ID 算法

Twitter 的 Snowfalke 算法解决了分布式系统生成全局 ID 的需求,生成 64 位 Long 型数字。

组成部分如下:

第一位未使用。

接下来的 41 位是毫秒级时间,41 位的长度可以表示 69 年的时间。

5 位 datacenterId,5 位 workerId。10 位长度最多支持部署 1024 个节点。

最后 12 位是毫秒内计数,12 位的计数顺序号支持每个节点每毫秒产生 4096 个 ID 序列。

数据迁移、扩容问题

当业务高速发展、面临性能和存储瓶颈时,才会考虑分片设计,此时就不可避免的需要考虑历史数据的迁移问题。

一般做法是先读出历史数据,然后按照指定的分片规则再将数据写入到各分片节点中。

此外还需要根据当前的数据量个 QPS,以及业务发展速度,进行容量规划,推算出大概需要多少分片(一般建议单个分片的单表数据量不超过 1000W)。

什么时候考虑分库分表

①能不分就不分

并不是所有表都需要切分,主要还是看数据的增长速度。切分后在某种程度上提升了业务的复杂程度。不到万不得已不要轻易使用分库分表这个“大招”,避免“过度设计”和“过早优化”。

分库分表之前,先尽力做力所能及的优化:升级硬件、升级网络、读写分离、索引优化等。当数据量达到单表瓶颈后,在考虑分库分表。

②数据量过大,正常运维影响业务访问

这里的运维是指:

对数据库备份,如果单表太大,备份时需要大量的磁盘 IO 和网络 IO。

对一个很大的表做 DDL,MySQL会锁住整个表,这个时间会很长,这段时间业务不能访问此表,影响很大。

大表经常访问和更新,就更有可能出现锁等待。

③随着业务发展,需要对某些字段垂直拆分

这里就不举例了,在实际业务中都可能会碰到,有些不经常访问或者更新频率低的字段应该从大表中分离出去。

④数据量快速增长

随着业务的快速发展,单表中的数据量会持续增长,当性能接近瓶颈时,就需要考虑水平切分,做分库分表了。

你可能感兴趣的:(分库分表场景&策略)