- 【机器学习】探索未来科技的前沿:人工智能、机器学习与大模型
AIGC零基础入门小白
AI大模型大模型教程人工智能机器学习科技AI大模型AIGCAI教程大模型教程
文章目录引言一、人工智能:从概念到现实1.1人工智能的定义1.2人工智能的发展历史1.3人工智能的分类1.4人工智能的应用二、机器学习:人工智能的核心技术2.1机器学习的定义2.2机器学习的分类2.3机器学习的实现原理2.4机器学习的应用2.5机器学习的示例代码2.6解释代码三、大模型:推动AI前沿发展的关键技术3.1大模型的定义3.2大模型的发展历程3.3深度学习与神经网络3.4大模型的优势与挑
- 现代人工智能综合分类:大模型时代的架构、模态与生态系统
司南锤
economics人工智能分类数据挖掘
目录引言:人工智能的第四次浪潮与新分类的必要性第一节:大型模型范式的基础支柱1.1规模化假说:算力、数据与算法的三位一体1.2“涌现能力”之谜:当“更多”变为“不同”1.3自监督学习(SSL)革命第二节:大型模型的技术分类学2.1Transformer:现代人工智能的架构基石2.2架构分化:一种功能性分类2.3提升效率与规模:专家混合模型(MoE)2.4超越Transformer:下一代架构的探索
- 十种常用数据分析模型
耐思nice~
数据分析数据分析人工智能机器学习数学建模
1-线性回归(LinearRegression)场景:预测商品销售额优点:简单易用,结果易于解释缺点:假设线性关系,容易受到异常值影响概念:建立自变量和因变量之间线性关系的模型。公式:[y=b_0+b_1x_1+b_2x_2+...+b_nx_n]代码示例:importpandasaspdfromsklearn.linear_modelimportLinearRegressionfromsklea
- Sequential Thinking:AI深度思考的新范式及其与CoT、ReAct的对比分析
码字的字节
人工智能SequentialCoTReAct
引言:AI深度思考的演进与SequentialThinking的崛起在人工智能技术快速发展的今天,AI模型的思考能力正经历着从简单应答到深度推理的革命性转变。这一演进过程不仅反映了技术本身的进步,更体现了人类对机器智能认知边界的持续探索。早期的大语言模型虽然能够生成流畅的文本,但在处理复杂问题时往往表现出"浅思考"的局限性——答案可能看似合理,却缺乏严谨的推理过程和系统性考量。例如,2022年的一
- 一元线性回归模型与最小二乘法
liuzx32
监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线
- Datawhale X 魔塔 Ai夏令营 --深度学习基础
一、局部极小值与全局极小值全局极小值:在损失函数的整个定义域内,损失值最小的点。这是我们在训练深度学习模型时希望找到的点,因为它代表着模型的最佳性能。局部极小值:在损失函数的一个局部区域内,损失值达到最小,但在整个函数定义域内可能不是最小的。当优化算法陷入局部极小值时,它可能会误以为已经找到了全局最优解,从而停止搜索。局部极小值的检测两种直观的方法来检测局部极小值:可视化方法:对于低维问题,我们可
- Unet源码实现(pytorch)
wyn20001128
pytorch人工智能python
U-Net是一种用于生物医学图像分割的卷积神经网络架构。它通过引入一种新颖的网络结构和训练策略解决了传统方法在数据量不足时面临的挑战。U-Net的主要思想是利用数据增强技术来高效利用有限的标注样本,并通过独特的网络设计来提高分割精度。主要贡献U-Net的主要贡献包括:1、数据增强策略:使用随机弹性变形和其他形式的数据增强来增加训练数据的多样性,从而在有限的数据集上训练出更强大的模型。2、U形网络结
- pytorch的学习笔记
wyn20001128
算法
一cuda 2006年,NVIDIA公司发布了CUDA(ComputeUnifiedDeviceArchitecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序。 CPU是用于负责逻辑性比较强的计算,GPU专注于执行高度线程化的并行处理任务。所以
- 深度学习模块实践手册(第十二期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
56、Ghost模块论文《GhostNet:MoreFeaturesfromCheapOperations》1、作用:Ghost模块是一种轻量级的特征提取模块,旨在通过廉价操作生成更多特征图,减少计算量的同时保持模型性能。传统卷积神经网络在生成特征图时存在大量冗余计算,Ghost模块通过将特征图生成过程分解为两个步骤,有效减少了计算复杂度,特别适合移动端和嵌入式设备部署。2、机制Ghost模块的机
- 算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录推荐算法系统系列二算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南更多技术内容总结推荐算法系统系列二算
- 035_ClaudeCode_MCP_介绍
义薄云天us
ClaudeCode菜鸟到高手专栏ClaudeCode机器学习深度学习mcp
035_ClaudeCode_MCP_介绍摘要ModelContextProtocol(MCP)是一个开放的标准化协议,专为大型语言模型提供上下文数据而设计。作为ClaudeCode生态系统的重要组成部分,MCP如同"AI应用程序的USB-C端口",提供了将AI模型连接到不同数据源和工具的标准化方式。本文全面介绍MCP的核心概念、架构设计和在ClaudeCode中的应用场景。目录什么是ModelC
- 算力网异构协同与能效优化驱动工业物联及智慧民生实践
内容概要算力网络作为数字基础设施的核心载体,正通过异构协同架构与能效优化框架的深度融合,构建起支撑工业物联网与智慧民生应用的技术底座。随着边缘计算节点的快速部署与模型压缩技术的突破性发展,工业场景中的设备健康检测与实时故障分析已实现毫秒级响应,典型应用场景包括产线异常识别、设备寿命预测等关键领域。与此同时,数据预处理技术的迭代升级有效缓解了工业传感器数据维度爆炸带来的算力压力,通过特征提取与噪声过
- LangChain 源码剖析(八):对话记忆的 “智能管家“_RunnableWithMessageHistory
ATM006
机器智能人工智能langchainAgent大模型
每一篇文章都短小精悍,不啰嗦。一、功能定位:给Runnable装上"对话记忆"在聊天机器人、客服系统等场景中,多轮对话是核心需求——用户不会每次都重复历史信息,系统需要记住之前说过什么。RunnableWithMessageHistory就是为解决这个问题而生的组件:它像一个"智能管家",给原本只能处理单次输入的Runnable(如大模型调用链)装上"记忆功能",自动管理对话历史的加载、合并和保存
- 深度学习模块实践手册(第十一期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
46、缩放点积注意力模块论文《AttentionIsAllYouNeed》1、作用:缩放点积注意力(ScaledDot-ProductAttention)是Transformer模型的核心组件,旨在解决序列建模中长距离依赖关系捕捉的问题。传统的循环神经网络(RNN)在处理长序列时存在梯度消失或爆炸的问题,且并行性较差。该模块通过计算查询(Query)、键(Key)和值(Value)之间的相似度,实
- 基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
摘要:在数字化商业生态中,用户留存与核心用户培育是产品成功的关键。本文聚焦开源AI大模型、AI智能名片与S2B2C商城小程序源码的协同应用,探讨如何通过技术赋能实现用户价值引导与核心用户沉淀。研究结合工业品供应链、美妆品牌、健康食品行业等案例,提出“认知渗透-行为引导-价值沉淀”的三阶段策略,验证了技术组合在提升用户活跃度、延长生命周期、促进商业价值转化方面的有效性。关键词:开源AI大模型;AI智
- 动态分析软件:DYNA3D_(12).优化与校准
优化与校准在动态分析软件的二次开发中,优化与校准是提高模型准确性和效率的关键步骤。通过优化,可以减少计算时间、提高计算精度,而校准则确保模型的预测结果与实际试验数据相匹配。本节将详细探讨优化与校准的原理和方法,并提供具体的代码示例和数据样例。优化原理优化是指在有限的计算资源和时间内,通过调整模型参数或结构,使模型达到最佳性能的过程。在动态分析软件中,优化通常涉及以下几个方面:模型参数优化:调整材料
- 动态分析软件:DYNA3D_(5).材料模型
材料模型在进行动态分析时,材料模型的选择和定义是至关重要的一步。DYNA3D提供了多种材料模型,以适应不同的物理现象和材料特性。本节将详细介绍几种常用的材料模型,并通过具体的例子说明如何在仿真中进行配置和使用。1.线弹性材料模型线弹性材料模型是最简单的材料模型之一,适用于在小变形范围内线性响应的材料。这种模型假设材料的应力与应变之间存在线性关系,即符合胡克定律。线弹性材料模型通常用于金属材料在低应
- 零基础学习性能测试第一章-为什么会有性能问题
试着
性能测试学习性能测试零基础
目录零基础性能测试:第一章-为什么会有性能问题?一、性能问题本质分析(黄金三角模型)1.资源不足的典型表现2.设计缺陷的灾难案例3.使用不当的五大雷区二、性能问题排查工具箱(即学即用)1.快速诊断命令表2.性能问题自检流程图3.真实工作场景解决方案三、性能优化的核心原则1.优化优先级法则2.必须避免的优化误区3.优化效果验证公式四、工作应用:性能问题排查清单1.五分钟快速检查表2.性能问题诊断报告
- 三款GIS工具多角度对比:免费的倾斜摄影OSGB/3Dtiles编辑转换发布平台
枝上棉蛮
教程数字孪生倾斜摄影OSGB3DTilesGIS三维数据转换数字孪生
GIS数据处理工具在现代技术与应用中扮演着至关重要的角色,它们不仅是连接原始地理信息与可分析、可视化数据的桥梁,更是推动地理信息系统(GIS)在各个行业领域深入发展与应用不可或缺的关键工具。选择一款合适的工具直接关系到数据处理、分析和展示的效率和精度,本文将通过功能、性能、价格等方面对比GISBox、CesiumLab和SuperMapiDesktop这三款软件。一、功能对比1.GISBox:以其
- Git remote 远程仓库链接管理
迹忆客
Linux服务端git
SVN使用单个集中仓库作为开发人员的通信枢纽,通过在开发人员的工作副本和中央仓库之间传递变更集来进行协作。这与Git的分布式协作模型不同,后者为每个开发人员提供了自己的仓库副本,并具有自己的本地历史记录和分支结构。用户通常需要共享一系列提交而不是单个变更集。Git允许我们在仓库之间共享整个分支,而不是将变更集从工作副本提交到中央仓库。gitremote命令是负责同步更改的更广泛系统的一部分。通过g
- 3D Gaussian Splatting (3DGS) 从入门到精通:安装、训练与常见问题全解析
3DGaussianSplatting(3DGS)从入门:安装、训练与常见问题全解析3DGaussianSplatting(3DGS)作为一种新兴的实时神经渲染技术,以其惊人的渲染速度和高质量的视觉效果迅速获得了社区的关注。然而,从环境配置到数据准备,再到模型训练和结果导出,整个流程中充满了各种可能令人困惑的“坑”。本文旨在为您提供一份全面的3DGS安装与使用指南,汇总了从环境搭建到最终结果产出的
- 全平台兼容+3倍加载提速:GISBox将重新定义三维可视化标准
GISBox
GISBoxGISBox纹理压缩数字孪生智慧城市3DTiles三维可视化BIM
在智慧城市、数字孪生、BIM工程等领域的三维可视化浪潮中,模型加载卡顿、存储成本高、跨平台兼容差已成为行业痛点。无论是Web端的实时渲染,还是移动端的户外作业,高精度模型与低性能设备之间的矛盾,始终制约着项目的落地效率。而GISBox的纹理压缩功能,正是破解这一难题的“金钥匙”——它通过算法革新与硬件加速,让超大规模三维模型“瘦身”80%,加载速度提升3倍,真正实现“轻量化、高性能、全兼容”的三维
- 开源AI大模型AI智能名片S2B2C商城小程序源码:重塑商业运营节奏与用户体验
说私域
人工智能ux
摘要:本文聚焦开源AI大模型AI智能名片S2B2C商城小程序源码在商业领域的应用,分析其如何通过技术整合简化运营流程、提升用户粘性。以用户日历功能为切入点,探讨源码在动态运营调整中的灵活性,结合案例阐述其对商业效率与用户体验的双重优化,为数字化转型提供实践参考。关键词:开源AI大模型;AI智能名片;S2B2C商城小程序;运营节奏;用户体验一、引言在数字化浪潮下,商业运营的复杂性与用户需求的个性化形
- 大模型或多模态在能源系统优化调度中的应用
u013250861
LLM能源人工智能
1.大模型在电力调度中的应用GAIA-电力调度大语言模型项目描述:专为电力调度设计的大语言模型,能够处理运行调整、运行监控和黑启动等任务技术特点:基于LLaMA2微调,专门针对电力系统领域优化论文:“Alargelanguagemodelforadvancedpowerdispatch”(NatureScientificReports,2025)GitHub:暂未公开源代码,但论文中提到了完整的技
- 构建企业级 AI Agent:不只是 Prompt 工程,更是系统工程
构建企业级AIAgent:不只是Prompt工程,更是系统工程文章目录构建企业级AIAgent:不只是Prompt工程,更是系统工程1.从“玩具”到“产品”:AIAgent的演化路径2.系统工程视角下的AIAgent构建原则2.1.状态外置:构建可恢复、可扩展的会话系统2.2.知识外化:建立结构化记忆机制2.3.模型作为配置项:提升系统的灵活性与可维护性2.4.多入口设计:让Agent更贴近用户场
- 大模型格式
目录大模型格式:ollma可以加载ggufChatGPT说:什么是GGUF?大模型格式:Ollama模型格式只能运行已打包成.gguf格式的模型,或通过其Modelfile方式构建ModelScope模型格式大多使用HuggingFaceTransformers格式,如.bin、.safetensors,与Ollama不兼容模型加载方式不同Ollama自带封装推理引擎(ggml/llama.cpp
- python基础练习题:超市收银系统
不爱说话的分院帽
python开发语言
这个超市收银系统包含以下功能:商品管理:支持添加和显示商品信息(ID、名称、价格、库存)购物车功能:可以添加、移除商品,查看购物车和计算总价结算功能:生成收据、处理支付、计算找零并更新库存数据模型:使用面向对象设计,包含商品、购物车和超市类系统运行后会显示菜单,用户可以通过数字选择不同操作,整个流程不需要图形界面,通过命令行交互完成购物和结算过程。importdatetimeclassProduc
- 用户系统的架构设计与实现策略(二)
sp42a
用户管理权限RBAC
一个用户系统除了基本的用户业务功能,还应囊括用户的权限设计及其实现。这本文中我们将探讨一下关于用户权限的设计与实现方法论。简介在构建现代应用系统的过程中,很少有设计决策会像访问控制机制那样,对安全性、可扩展性和用户体验产生如此深远的影响。很多开发团队最初会选择一个简单的RBAC(基于角色的访问控制)模型,并将授权逻辑直接写入应用代码中。然而,随着业务需求不断演进,通常需要融合RBAC、ABAC和R
- 【深度强化学习】MIP-DQN 实现案例(完整Python代码)
目录MIP-DQN算法概述建模基础训练阶段(Training)部署阶段(OnlineExecution)DNN网络转化为MIP表达式性能指标完整Python代码实现主函数:random_generator_battery模型函数:MIP_DQN基础/专用库包安装模型运行(完整Python代码)参数设置函数:Parameters参考本博客根据论文《Optimalenergysystemschedul
- springboot整合Swagger
志华2020
Swagger简介1、认识SwaggerSwagger是一个规范和完整的框架,用于生成、描述、调用和可视化RESTful风格的Web服务。总体目标是使客户端和文件系统作为服务器以同样的速度来更新。文件的方法,参数和模型紧密集成到服务器端的代码,允许API来始终保持同步。作用:1.接口的文档在线自动生成。2.功能测试。Swagger是一组开源项目,其中主要要项目如下:Swagger-tools:提供
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement