- 使用Dall-E生成图像:文本到图像的魔力
shuoac
计算机视觉人工智能python
使用Dall-E生成图像:文本到图像的魔力技术背景介绍Dall-E是OpenAI开发的一个强大的文本到图像生成模型,它能够根据自然语言描述创造出全新的数字图像。这一技术基于深度学习的方法,使得创意与AI图像生成的结合更具可能性。本文将介绍如何调用Dall-EAPI来生成图像,从而使开发者能够将这一技术应用到自己的项目中。核心原理解析Dall-E利用大型语言模型(LLM)从用户提供的文本描述中提取详
- Python语言程序设计 1
摸你就像摸自己
python
目录1Python基本语法元素1.1程序设计基本方法1.1.1计算机与程序设计1.1.2编译与解释1.1.3程序的基本编写方法—IPO1.1.4计算机编程1.2Python开发环境配置1.2.1Python语言概述1.2.2Python程序的编写与运行例1:计算圆面积例2:绘制同切圆例3:绘制五角星1.3实例一:温度转换1.3.1问题分析:实例编写:1.4Python程序语法元素分析1.4.1格
- 【华为OD】游戏里面,队伍通过匹配实力相近的对手进行对战。但是如果匹配的队伍实力相差太大,对于双方游戏体验都不会太好。
测试_老姜
华为odpython
游戏里面,队伍通过匹配实力相近的对手进行对战。但是如果匹配的队伍实力相差太大,对于双方游戏体验都不会太好。给定n个队伍的实力值,对其进行两两实力匹配,两支队伍实例差距在允许的最大差距d内,则可以匹配。要求在匹配队伍最多的情况下匹配出的各组实力差距的总和最小。输入描述第一行两个整数,n,d。队伍个数n。允许的最大实力差距d。2<=n<=500<=d<=100第二行,n个整数,表示队伍的实力值,以空格
- 头条原创文章一键转换剪映生成视频
Mr数据杨
Python视频剪辑pythonmoveipy图文转视频西瓜视频剪映
随着技术的进步,平台逐渐为创作者提供了更多便捷的功能来增强内容的表达效果。近期,某平台新增了一个实用功能,允许用户将自己发布的文章通过后台的视频生成工具一键转换为短视频。然而,这一功能的使用存在一些限制,比如仅支持原创文章,并且生成的视频只能在该平台发布,暂时无法同步至其他社交平台。尽管如此,通过对生成视频的观察与分析,可以发现其处理方式与剪映等主流视频编辑软件有相似之处,这为进一步扩展视频的应用
- C语言程序配置搭建提纲
oicola
c语言开发语言编辑器c++
C、C++语言程序配置搭建提纲一、环境准备安装编译器选择合适的C语言编译器,如MinGW(包含GCC)或MSVC。从官方渠道下载并安装,确保安装过程中选择正确的组件(如MinGW的GCC或MSVC的“桌面开发withC++”工作负载)。安装代码编辑器推荐使用VisualStudioCode(VSCode),从官网下载并安装。配置环境变量将编译器的路径添加到系统的环境变量PATH中。对于MinGW,
- JVM常用概念之编译器黑洞
剑海风云
JDK(JavaDevelopmentKit)jvm编译器编译器黑洞
问题JMH如何避免微小基准测试中的不会运行的代码的消除工作?是否有隐式或显式编译器支持?基础知识优化编译器擅长优化简单的东西。例如,如果存在任何人都无法观察到的计算,则可以将其视为“不会运行的代码”并将其删除。这通常是一件好事,直到你运行基准测试。在那里,你想要计算,但你不需要结果。本质上,你观察基准测试所占用的“资源”,但没有简单的方法可以与编译器争论这一点。比如下面的测试用例,该方法中只涉及到
- 深入了解盘古大模型:技术、应用与未来
Hardess-god
Literaturereview人工智能
随着人工智能技术的迅猛发展,预训练大模型已成为AI领域最前沿、最热门的研究方向之一。近年来,中国自主研发的大模型之一——盘古模型(PanGuModel)逐渐进入公众视野,凭借其强大的性能和广泛的应用前景,引发了行业内外的广泛关注。什么是盘古大模型?盘古大模型是华为公司联合多家科研机构共同研发的超大规模预训练语言模型。该模型以中文数据为主进行训练,旨在推动中文自然语言处理(NLP)以及跨模态应用的技
- 【从零开始学习计算机科学】软件测试(三)回归测试、系统测试 与 验收测试
贫苦游商
学习软件测试回归测试系统测试验收测试测试工具ab测试
【从零开始学习计算机科学】软件测试(三)回归测试、系统测试与验收测试回归测试回归测试的组织和实施回归测试集回归测试的范围自动回归测试框架自动回归测试框架的技术特点回归测试克服的几个问题回归测试人员应掌握的测试手段回归用例库的维护系统测试系统测试的组织和分工系统测试的过程系统测试方法用户界面测试用户界面测试-符合标准和规范用户界面测试-一致性用户界面测试-直观性用户界面测试-灵活性用户界面测试-舒适
- 华为OD机试 - 最佳对手( Python)
AsiaFT.
Py华为OD机试AB卷pythonod
题目描述游戏里面,队伍通过匹配实力相近的对手进行对战。但是如果匹配的队伍实力相差太大,对于双方游戏体验都不会太好。给定n个队伍的实力值,对其进行两两实力匹配,两支队伍实例差距在允许的最大差距d内,则可以匹配。要求在匹配队伍最多的情况下匹配出的各组实力差距的总和最小。输入描述第一行,n,d。队伍个数n。允许的最大实力差距d。2<=n<=500<=d<=100第二行,n个队伍的实力值空格分割。0<=各
- 零基础上手Python数据分析 (6):Python 异常处理,告别程序崩溃的烦恼!
kakaZhui
python数据分析数据库excel数据挖掘
回顾一下,前几篇博客我们学习了Python的基本语法、数据结构和文件操作。现在,我们已经掌握了Python编程的基础知识,可以开始编写更复杂的数据分析代码了。但是,在实际的数据分析工作中,程序并非总能一帆风顺地运行,总会遇到各种意外情况,例如:文件找不到:程序尝试读取一个不存在的数据文件。数据格式错误:数据文件中包含非预期的格式,例如本应是数字的列包含了文本。网络连接中断:程序尝试从网络获取数据,
- 2023华为OD机试真题-最佳对手(JAVA、Python、C++)
huaweiod123
华为OD机试真题2023javac++算法华为python
题目描述:游戏里面,队伍通过匹配实力相近的对手进行对战。但是如果匹配的队伍实例相差太大,对于双方游戏体验都不会太好。给定n个队伍的实力值,对其进行两两实力匹配,两支队伍实例差距在允许的最大差距d内,则可以匹配。要求在匹配队伍最多的情况下,匹配出的各组实力差距的总和最小。输入描述:第一行,n,d。队伍个数n。允许的最大实力差距d。(2<=n<=50,0<=d<=100)。第二行,n个队伍的实力值,空
- 使用PyInstaller打包Python程序时,如何避免生成的可执行文件(exe)过大的解决方法
ta叫我小白
pythonpython开发语言pyinstaller可执行文件
使用PyInstaller打包出来的exe等可执行文件过大(比如我的一个小项目,打包之后超过了600M),大概率是使用的python解释器(PythonInterpreter)中安装了许多当前项目没有使用的库。解决方法:打包时,最好为这个项目创建一个独立的虚拟解释器环境,如下图:指定了新的虚拟环境之后,你需要在新环境中安装你所需要的依赖库。在py文件中选择安装即可,此时依赖库会安装到新的环境中。切
- 华为OD机试E卷 - 最佳对手 / 实力差距最小总和(Java & Python& JS & C++ & C )
算法大师
javapythonjavascriptc++
题目描述游戏里面,队伍通过匹配实力相近的对手进行对战。但是如果匹配的队伍实力相差太大,对于双方游戏体验都不会太好。给定n个队伍的实力值,对其进行两两实力匹配,两支队伍实例差距在允许的最大差距d内,则可以匹配。要求在匹配队伍最多的情况下匹配出的各组实力差距的总和最小。输入描述第一行,n,d。队伍个数n。允许的最大实力差距d。2<=n<=500<=d<=100第二行,n个队伍的实力值空格分割。0<=各
- python语言程序设计基础,python编程代码大全
Rtee1
python开发语言服务器
大家好,小编为大家解答python语言程序设计基础第二版课后答案的问题。很多人还不知道PYTHON语言程序设计实践教程(陈东)答案,现在让我们一起来看看吧!目录1Python基本语法元素1.1程序设计基本方法1.1.1计算机与程序设计1.1.2编译与解释1.1.3程序的基本编写方法—IPO1.1.4计算机编程1.2Python开发环境配置1.2.1Python语言概述1.2.2Python程序的
- 人工智能 - 通用 AI Agent 之 LangManus、Manus、OpenManus 和 OWL 技术选型
天机️灵韵
具身智能人工智能人工智能具身智能智能体
一、核心项目概览1.Manus(闭源通用AIAgent)定位:全球首个全流程自动化通用AIAgent,GAIA基准测试SOTA水平。核心能力:全流程自动化:从任务规划(如撰写报告)到执行(代码生成、表格制作)的端到端处理。智能纠错机制:基于沙箱环境的实时错误反思与调整(类似CodeAct技术)。云端依赖:需联网运行,集成浏览器操作、信息检索等工具。局限性:闭源且采用邀请制,二手市场邀请码溢价至数万
- C语言【文件操作】详解下
Run_Teenage
C语言基础c语言
引言详细介绍了文件的随机读写函数和文件读取结束的判定看这篇博文前,希望您先仔细看一下这篇博文,理解一下文件指针和流的概念:C语言【文件操作】详解上-CSDN博客一、文件的随机读写函数1.fseek函数根据文件指针的位置和偏移量来定位文件指针(文件内容的光标)。函数原型:intfseek(FILE*stream,longintoffset,intorigin);作用:重新定位流位置指示器参数:str
- c++算法赛万能模板个人笔记适用蓝桥杯,天梯赛,acm等赛事
a东方青
个人笔记c++算法笔记
算法笔记-更新与2025-3-22点赞收藏+关注持续更新算法基础二分整数二分//在一个单调区间里面去找答案boolcheck(intx){/*...*/}//检查x是否满足某种性质//区间[l,r]被划分成[l,mid]和[mid+1,r]时使用:intbsearch_1(intl,intr){while(l>1;if(check(mid))r=mid;//check()判断mid是否满足性质el
- 【蓝桥杯】真题 2386染色时间 (优先队列BFS)
遥感小萌新
蓝桥杯蓝桥杯宽度优先职场和发展
思路这里每一个格子染色多了时间这一层限制,相当于图的每一边有了权重的限制,那么我们就不能直接用双向队列求最短路。而是使用优先队列。规则是这样的:每一个节点可以多次入队,但是只有第一次出队有效。所以这次我们不会在加入队列时更改标签vis,而是在出队时更改标签。如果在出队时发现vis已经更改,这说明这个元素以前出过队列(不是第一次出队),则直接continuecode我们额外设置两个数组,vis标签数
- 【Azure 架构师学习笔记】- Azure Networking(1) -- Service Endpoint 和 Private Endpoint
發糞塗牆
Azure架构师学习笔记Azure网络安全azureNetwork
本文属于【Azure架构师学习笔记】系列。本文属于【AzureNetworking】系列。前言最近公司的安全部门在审计云环境安全性时经常提到serviceendpoint(SE)和priavateendpoint(PE)的术语,为此做了一些研究储备。云计算的本质就是网络,默认情况下资源间及外部都是通过公网也就是互联网访问。为了安全,Azure引入了SE和PE等服务。云环境网络流动主要有两个:inb
- MySQL 8.0新特性深度解析:窗口函数与JSON数据处理的10大技巧
墨瑾轩
一起学学数据库【一】mysqljson
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣第1章:MySQL8.0简介嗨,亲爱的小伙伴们!欢迎来到MySQL8.0的奇妙世界,这里充满了新鲜和惊喜。MySQL8.0是一个数据库界的超级英雄,它带着一系列令人兴奋的新特性,比如窗口函数和JSON数据处理,来拯救我们的数据处理任务。1.1MySQL8.0的
- L1-7 撒狗粮(一分钟讲清差分)
小竹子14
算法
网络上称一对情侣秀恩爱为“撒狗粮”,因为单身人士统称为“单身狗”。在一个大型聚会上,所有宾客被安排坐在一张长条宴会桌边。如果一对情侣坐在一起,那么他们两人身边的单身狗就会被撒一脸狗粮;如果他们没有坐在一起,那么所有被夹在他们两人之间的单身狗都会被撒一脸狗粮。本题就请你找出被撒狗粮最多(以“脸”为单位)的那位单身人士。输入格式:输入第一行给出一个正整数N(≤50000),是已知情侣的对数;随后N行,
- python字符级差异分析并生成 Word 报告
myzzb
wordpython文字识别算法文本差异
importdifflibfromdocximportDocumentfromdocx.sharedimportRGBColordefanalyze_char_differences(text_a,text_b):"""分析两个文本的字符级差异:paramtext_a:第一个文本:paramtext_b:第二个文本"""matcher=difflib.SequenceMatcher(None,te
- 力扣刷题-热题100题-第20题(c++、python)
weixin_44505472
c++pythonleetcode
48.旋转图像-力扣(LeetCode)https://leetcode.cn/problems/rotate-image/?envType=study-plan-v2&envId=top-100-liked使用辅助矩阵直接创建一个新矩阵来装旋转好的矩阵,不过需要注意的是要将新矩阵的值赋值回原矩阵,在c++中是可以直接=,但python中要注意matrix[:]=matrix1才是赋值,直接=是改
- SOFABoot-01-蚂蚁金服开源的 sofaboot 是什么黑科技?
后端java
前言大家好,我是老马。sofastack其实出来很久了,第一次应该是在2022年左右开始关注,但是一直没有深入研究。最近想学习一下SOFA对于生态的设计和思考。sofaboot系列SOFABoot-00-sofaboot概览SOFABoot-01-蚂蚁金服开源的sofaboot是什么黑科技?SOFABoot-02-模块化隔离方案SOFABoot-03-sofaboot介绍SOFABoot-04-快
- SOFABoot-00-sofaboot 概览
后端java
sofaboot前言大家好,我是老马。sofastack其实出来很久了,第一次应该是在2022年左右开始关注,但是一直没有深入研究。最近想学习一下SOFA对于生态的设计和思考。sofaboot系列SOFABoot-00-sofaboot概览SOFABoot-01-蚂蚁金服开源的sofaboot是什么黑科技?SOFABoot-02-模块化隔离方案SOFABoot-03-sofaboot介绍SOFAB
- HarmonyOS5开发:手把手教你用 Ark-TS UI 做一个会 “动” 的计数器:从代码到原理全解析
harmonyos-next
今天咱们用鸿蒙5的Ark-TSUI做一个简单又有趣的计数器应用。点击按钮数字就会增加,而且界面还能自动更新。通过这个案例,你能轻松理解Ark-TSUI的核心玩法。一、最终效果长什么样?打开应用,你会看到一个大按钮,上面写着“点击加1”。每次点击按钮,按钮上方的数字就会变大。比如第一次点击变成“1”,第二次变成“2”,依此类推。整个过程不需要手动刷新页面,数字会自动变化。二、完整代码长这样types
- 鸿蒙 5 开发工具 Ark-TS UI 到底有多好用?一篇文章讲明白
harmonyos-next
鸿蒙5系统越来越火,很多开发者都在学怎么用它开发应用。所以今天咱们聊聊鸿蒙5里特别重要的一个工具——Ark-TSUI。这玩意儿到底是干啥的?简单说,它就是用来做应用界面的,而且比传统方法更简单、更高效。下面咱们用大白话讲讲它的厉害之处。一、不用纠结怎么盖房子,只需要画图纸以前写代码做界面,就像盖房子要一块砖一块砖垒——得告诉程序“先建墙,再安门,最后刷漆”。但Ark-TSUI不一样,它用的是“声明
- 一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
文章目录一切皆是映射:实现神经网络的硬件加速技术:GPU、ASIC(专用集成电路)和FPGA(现场可编程门阵列)1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.2.1GPU加速3.2.2ASIC加速3.2.3FPGA加速3.3算法优缺点GPUASICFPGA3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过
- python中如何组织项目工程文件
晓风残月淡
python爬虫python开发语言项目工程文件
一、项目工程文件目录一个典型的Python项目工程目录结构可以帮助你更好地组织代码、资源和测试,从而使得项目更加清晰和易于维护。my_project/│├──my_project/#项目的主代码包│├──__init__.py#包初始化文件│├──module_1.py#示例模块1│└──module_2.py#示例模块2│├──tests/#测试代码目录│├──__init__.py#测试包初始
- NLP高频面试题(七)——GPT和Bert的mask有什么区别?
Chaos_Wang_
NLP常见面试题自然语言处理gptbert
GPT和BERT的Mask机制对比:核心区别与优化策略在NLP领域,GPT和BERT是最具代表性的预训练语言模型之一。它们都在训练过程中使用了Mask机制来引导模型学习语言表示,但具体实现方式和目标却有所不同。本文将深入探讨GPT和BERT的Mask方法的核心区别,并分析其优化策略。1.BERT的Mask机制:基于MLM(MaskedLanguageModel)BERT(Bidirectional
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,