numpy.float_power(arr1,arr2,out = None,其中= True,强制转换=“ same_kind”,order =“ K”,dtype = None):
来自第一个数组的数组元素被提升为来自第二个元素的元素的幂(所有情况都逐个元素发生)。 arr1和arr2必须具有相同的形状。
float_power与幂函数的不同之处在于,将整数float16和float32提升为float64的最小精度为float64,因此结果始终是不精确的。此函数将为负幂返回可用结果,而对于+ ve幂则很少溢出。
参数:
arr1 :[array_like]Input array or object which works as base.
arr2 :[array_like]Input array or object which works as exponent.
out :[ndarray, optional]Output array with same dimensions as Input array,
placed with result.
**kwargs :Allows you to pass keyword variable length of argument to a function.
It is used when we want to handle named argument in a function.
where :[array_like, optional]True value means to calculate the universal
functions(ufunc) at that position, False value means to leave the
value in the output alone.
返回:
An array with elements of arr1 raised to exponents in arr2
代码1:将arr1提升为arr2
# Python program explaining
# float_power() function
import numpy as np
# input_array
arr1 = [2, 2, 2, 2, 2]
arr2 = [2, 3, 4, 5, 6]
print ("arr1 : ", arr1)
print ("arr1 : ", arr2)
# output_array
out = np.float_power(arr1, arr2)
print ("\nOutput array : ", out)
输出:
arr1 : [2, 2, 2, 2, 2]
arr1 : [2, 3, 4, 5, 6]
Output array : [ 4. 8. 16. 32. 64.]
代码2:将arr1的元素提高到指数2
# Python program explaining
# float_power() function
import numpy as np
# input_array
arr1 = np.arange(8)
exponent = 2
print ("arr1 : ", arr1)
# output_array
out = np.float_power(arr1, exponent)
print ("\nOutput array : ", out)
输出:
arr1 : [0 1 2 3 4 5 6 7]
Output array : [ 0. 1. 4. 9. 16. 25. 36. 49.]
代码3:如果arr2具有-ve元素,则float_power处理结果
# Python program explaining
# float_power() function
import numpy as np
# input_array
arr1 = [2, 2, 2, 2, 2]
arr2 = [2, -3, 4, -5, 6]
print ("arr1 : ", arr1)
print ("arr2 : ", arr2)
# output_array
out = np.float_power(arr1, arr2)
print ("\nOutput array : ", out)
输出:
arr1 : [2, 2, 2, 2, 2]
arr2 : [2, -3, 4, -5, 6]
Output array : [ 4.00000000e+00 1.25000000e-01 1.60000000e+01
3.12500000e-02 6.40000000e+01]