用过POI的人都知道,在POI以前的版本中并不支持大数据量的处理,如果数据量过多还会常报OOM错误, 这时候调整JVM的配置参数也不是一个好对策(注:jdk在32位系统中支持的内存不能超过2个G,而在64位中没有限制,但是在64位的系统中,性能并不是太好),好在POI3.8版本新出来了一个SXSSFWorkbook对象,它就是用来解决大数据量以及超大数据量的导入导出操作的,但是SXSSFWorkbook只支持.xlsx格式,不支持.xls格式的Excel文件。
这里普及一下,在POI中使用HSSF对象时,excel 2003最多只允许存储65536条数据,一般用来处理较少的数据量,这时对于百万级别数据,Excel肯定容纳不了,而且在计算机性能稍低的机器上测试,就很容易导致堆溢出。而当我升级到XSSF对象时,它可以直接支持excel2007以上版本,因为它采用ooxml格式。这时excel可以支持1048576条数据,单个sheet表就支持近104万条数据了,虽然这时导出100万数据能满足要求,但使用XSSF测试后发现偶尔还是会发生堆溢出,所以也不适合百万数据的导出。
现在我们知道excel2007及以上版本可以轻松实现存储百万级别的数据,但是系统中的大量数据是如何能够快速准确的导入到excel中这好像是个难题,对于一般的web系统,我们为了解决成本,基本都是使用的入门级web服务器tomcat,既然我们不推荐调整JVM的大小,那我们就要针对我们的代码来解决我们要解决的问题。在POI3.8之后新增加了一个类,SXSSFWorkbook,采用当数据加工时不是类似前面版本的对象,它可以控制excel数据占用的内存,他通过控制在内存中的行数来实现资源管理,即当创建对象超过了设定的行数,它会自动刷新内存,将数据写入文件,这样导致打印时,占用的CPU,和内存很少。但有人会说了,我用过这个类啊,他好像并不能完全解决,当数据量超过一定量后还是会内存溢出的,而且时间还很长。对你只是用了这个类,但是你并没有针对你的需求进行相应的设计,仅仅是用了,所以接下来我要说的问题就是,如何通过SXSSFWorkbook以及相应的写入设计来实现百万级别的数据快速写入。
我先举个例子,以前我们数据库中存在大量的数据,我们要查询,怎么办?我们在没有经过设计的时候是这样来处理的,先写一个集合,然后执行jdbc,将返回的结果赋值给list,然后再返回到页面上,但是当数据量大的时候,就会出现数据无法返回,内存溢出的情况,于是我们在有限的时间和空间下,通过分页将数据一页一页的显示出来,这样可以避免了大数据量数据对内存的占用,也提高了用户的体验,在我们要导出的百万数据也是一个道理,内存突发性占用,我们可以限制导出数据所占用的内存,这里我先建立一个list容器,list中开辟10000行的存储空间,每次存储10000行,用完了将内容清空,然后重复利用,这样就可以有效控制内存,所以我们的设计思路就基本形成了,所以分页数据导出共有以下3个步骤:
求数据库中待导出数据的行数
根据行数求数据提取次数
按次数将数据写入文件
通过以上步骤在效率和用户体验性上都有了很高的提高,接下来上代码
public void exportBigDataExcel(ValueDataDto valueDataDto, String path)
throws IOException {
// 最重要的就是使用SXSSFWorkbook,表示流的方式进行操作
// 在内存中保持100行,超过100行将被刷新到磁盘
SXSSFWorkbook wb = new SXSSFWorkbook(100);
Sheet sh = wb.createSheet(); // 建立新的sheet对象
Row row = sh.createRow(0); // 创建第一行对象
// -----------定义表头-----------
Cell cel0 = row.createCell(0);
cel0.setCellValue("1");
Cell cel2 = row.createCell(1);
cel2.setCellValue("2");
Cell cel3 = row.createCell(2);
cel3.setCellValue("3");
Cell cel4 = row.createCell(3);
// ---------------------------
List<valuedatabean> list = new ArrayList<valuedatabean>();
// 数据库中存储的数据行
int page_size = 10000;
// 求数据库中待导出数据的行数
int list_count = this.daoUtils.queryListCount(this.valueDataDao
.queryExportSQL(valueDataDto).get("count_sql"));
// 根据行数求数据提取次数
int export_times = list_count % page_size > 0 ? list_count / page_size
+ 1 : list_count / page_size;
// 按次数将数据写入文件
for (int j = 0; j < export_times; j++) {
list = this.valueDataDao.queryPageList(this.valueDataDao
.queryExportSQL(valueDataDto).get("list_sql"), j + 1,
page_size);
int len = list.size() < page_size ? list.size() : page_size;
for (int i = 0; i < len; i++) {
Row row_value = sh.createRow(j * page_size + i + 1);
Cell cel0_value = row_value.createCell(0);
cel0_value.setCellValue(list.get(i).getaa());
Cell cel2_value = row_value.createCell(1);
cel2_value.setCellValue(list.get(i).getaa());
Cell cel3_value = row_value.createCell(2);
cel3_value.setCellValue(list.get(i).getaa_person());
}
list.clear(); // 每次存储len行,用完了将内容清空,以便内存可重复利用
}
FileOutputStream fileOut = new FileOutputStream(path);
wb.write(fileOut);
fileOut.close();
wb.dispose();
}
到目前已经可以实现百万数据的导出了,但是当我们的业务数据超过200万,300万了呢?如何解决?
这时,直接打印数据到一个工作簿的一个工作表是实现不了的,必须拆分到多个工作表,或者多个工作簿中才能实现。因为一个sheet最多行数为1048576。
下面就以这种思路提供另外一种解决方案,直接上代码(后面会附上测试数据库,及案例需要的jar包)
public static void main(String[] args) throws Exception {
TestExportData tm = new TestExportData();
tm.jdbcex(true);
}
public void jdbcex(boolean isClose) throws InstantiationException, IllegalAccessException,
ClassNotFoundException, SQLException, IOException, InterruptedException {
String xlsFile = "f:/poiSXXFSBigData.xlsx"; //输出文件
//内存中只创建100个对象,写临时文件,当超过100条,就将内存中不用的对象释放。
Workbook wb = new SXSSFWorkbook(100); //关键语句
Sheet sheet = null; //工作表对象
Row nRow = null; //行对象
Cell nCell = null; //列对象
//使用jdbc链接数据库
Class.forName("com.mysql.jdbc.Driver").newInstance();
String url = "jdbc:mysql://localhost:3306/bigdata?characterEncoding=UTF-8";
String user = "root";
String password = "123456";
//获取数据库连接
Connection conn = DriverManager.getConnection(url, user, password);
Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
String sql = "select * from hpa_normal_tissue limit 1000000"; //100万测试数据
ResultSet rs = stmt.executeQuery(sql);
ResultSetMetaData rsmd = rs.getMetaData();
long startTime = System.currentTimeMillis(); //开始时间
System.out.println("strat execute time: " + startTime);
int rowNo = 0; //总行号
int pageRowNo = 0; //页行号
while (rs.next()) {
//打印300000条后切换到下个工作表,可根据需要自行拓展,2百万,3百万...数据一样操作,只要不超过1048576就可以
if (rowNo % 300000 == 0) {
System.out.println("Current Sheet:" + rowNo / 300000);
sheet = wb.createSheet("我的第" + (rowNo / 300000) + "个工作簿");//建立新的sheet对象
sheet = wb.getSheetAt(rowNo / 300000); //动态指定当前的工作表
pageRowNo = 0; //每当新建了工作表就将当前工作表的行号重置为0
}
rowNo++;
nRow = sheet.createRow(pageRowNo++); //新建行对象
// 打印每行,每行有6列数据 rsmd.getColumnCount()==6 --- 列属性的个数
for (int j = 0; j < rsmd.getColumnCount(); j++) {
nCell = nRow.createCell(j);
nCell.setCellValue(rs.getString(j + 1));
}
if (rowNo % 10000 == 0) {
System.out.println("row no: " + rowNo);
}
// Thread.sleep(1); //休息一下,防止对CPU占用,其实影响不大
}
long finishedTime = System.currentTimeMillis(); //处理完成时间
System.out.println("finished execute time: " + (finishedTime - startTime) / 1000 + "m");
FileOutputStream fOut = new FileOutputStream(xlsFile);
wb.write(fOut);
fOut.flush(); //刷新缓冲区
fOut.close();
long stopTime = System.currentTimeMillis(); //写文件时间
System.out.println("write xlsx file time: " + (stopTime - startTime) / 1000 + "m");
if (isClose) {
this.close(rs, stmt, conn);
}
}
//执行关闭流的操作
private void close(ResultSet rs, Statement stmt, Connection conn) throws SQLException {
rs.close();
stmt.close();
conn.close();
}
数据库截图:
案例执行结果截图:
转载至:https://blog.51cto.com/u_9177933/3004953