ElasticSearch adj. 有弹性的;灵活的;易伸缩的
ElasticSearch是一个实时分布式搜索和分析引擎。它让你以前所未有的速度处理大数据成为可能。它用于全文搜索、结构化搜索、分析以及将这三者混合使用:
总之,可以对搜索关键字高亮显示,可以对搜索结果纠错,提供建议。并且ELK是大数据必会的技术。
本人根据b站狂神说视频“【狂神说Java】ElasticSearch7.6.x最新完整教程通俗易懂”学习ES,参考网上已有笔记,对已有笔记错误修订和笔记整合,具体链接在文末。整理不易,望君珍惜。
Doug Cutting 是一位美国工程师,迷上了搜错引擎。他做了一个用于文本搜索的函数库,命名为Lucene. Lucene 是用java写的,目标是为各种中小型应用软件加入全文搜索功能。**Lucene是一套信息检索工具包,**并不包含搜索引擎系统,它包含了索引结构、读写索引工具、相关性工具、排序等功能。因此在使用Lucenen时仍需关注搜索引擎系统,例如数据获取、解析、分词等方面的东西。
该项目早期被发布在Doug Cutting的个人网站,后来成为了Apache软件基金会jakarta项目的一个子项目。后来在Lucene的基础上开发了一款可以代替当时的主流搜索的开源搜索引擎,命名为Nutch.
Nutch 是一个建立在Lucene核心之上的网页搜索应用程序,它在Lucene的基础上加了爬虫和一些网页相关的功能,目的就是从一个简单的站内检索推广到全球网络上的搜索上。
随着时间的推移,作为互联网搜索引擎,都面临对象“体积”不断增大的问题。需要存储大量的网页,并不断优化自己的搜索算法,提升搜索效率。
在2004年,Doug Cutting实现了分布式文件存储系统,并将它命名为NDFS(Nutch Distributed File System)。后来他加入了雅虎,将NDFS和MapReduce进行了改造,并重新命名为Hadoop(NDFS也改名为HDFS,Hadoop Distributed File System). 这就是大名鼎鼎的大数据框架系统–Hadoop的由来,而Doug Cutting则被人称为Hadoop之父。
ElasticSearch,简称es,es是一个开源的高拓展的分布式全文检索引擎,它可以近乎实施的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。es也使用java开发并使用Lucene 作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。
谁在使用
维基百科,类似百度百科,全文检索,高亮,搜索推荐
国外新闻网站,类似搜狐新闻,用户行为日志(点击,浏览,收藏,评论)+社交网络数据,数据分析。。。
Stack Overflow国外的程序异常讨论论坛
GitHub(开源代码管理),搜索上千亿行代码
电商网站,检索商品
日志数据分析,logstash采集日志,ES进行复杂的数据分析,ELK技术(elasticsearch+logstash+kibana)
商品价格监控网站
商业智能系统
站内搜索
ElasticSearch简介
ElasticSearch是一个实施分布式搜索和分析引擎。它让你以前所未有的速度处理大数据成为可能。它用于全文搜索、结构化搜索、分析以及将这三者混合使用:
维基百科使用es提供全文搜索并高亮关键字,以及输入实施搜索和搜索纠错等搜索建议功能;英国公报使用es结合用户日志和社交网络数据提供给他们的编辑以实施的反馈,以便了解龚总对新发表的文章的回应。。。
es是一个基于Apache Lucene™的开源搜索引擎。无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进、性能最好、功能最全的搜索引擎库。想要使用它,必须使用java来作为开发语言并将其直接继承到你的应用中。
solr简介
Solr是Apache下的一个顶级开源项目,采用java开发,是基于Lucene的全文搜索服务器。Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展、并对索引、搜索性能进行了优化。它可以独立运行,是一个独立的企业及搜索应用服务器,它对外提供类似于web-service的API接口。用户可以通过http请求,像搜索引擎服务器提交一定格式的文件,生成索引;也可以通过提出查找请求,并得到返回结果。
两者比较
总结
本教程使用的版本是7.6.1
需要注意所有es和es相关工具都要版本对应
elasticsearch-7.6.1:ES安装包
elasticsearch-head-master:用于数据展示
kibana-7.6.1-windows-x86_64:用于操作命令
在官网下载安装包
注:安装ElasticSearch之前必须保证JDK1.8+安装完毕,并正确的配置好JDK环境变量,否则启动ElasticSearch失败。
下载windows版本,解压压缩包,打开,看到如下目录:
打开config文件夹:
双击bin目录下的elasticsearch.bat启动
点击后:
在浏览器访问127.0.0.1:9200,若得到以下信息则安装成功:
由于是命令行操作,不方便,所以需要安装图形化界面
head只用来看数据,不用来干别的
安装es的图形化界面插件
下载nodejs:https://nodejs.org/en/
LTS:长期支持版本
安装:下一步下一步 。。。
查看版本:
下载elasticsearch-head-master.zip:
解压后安装依赖,一定要跳转到该解压文件夹下输入该命令:
访问测试:
由于ES进程和客户端进程端口号不同,存在跨域问题,所以需要在ES的配置文件中配置下解决跨域问题:
启动es,使用head工具进行连接测试:
初学把ES当成一个数据库就行了
ES中 | 普通数据库中 | |
---|---|---|
数据库 | 索引 | 数据库 |
表 | 文档(用的不多了) | 表 |
类型 | type |
ELK是ElasticSearch 、 Logstash、Kibana三大开源框架首字母大写简称。市面上也称为Elastic Stack。Lostash是ELK的中央数据流,用于从不同目标(文件/数据存储/MQ)收集的不同格式数据,经过过滤后支持输出到不同目的地。Kibana可以将elastic的数据通过友好的页面展示出来,提供实时分析的功能。
市面上很多开发只要提到ELK能够一直说出它是一个日志分析架构技术栈总称,但实际上ELK不仅仅适用于日志分析,它还可以支持其他任何数据分析和手机的场景,日志分析和收集知识更具有代表性。并非唯一性。
Kibana是一个针对ElasticSearch的开源分析及可视化平台,用来搜索、查看交互存储在ElasticSearch索引中的数据。使用Kibana,可以通过各种如表进行高级数据分析及展示。Kibana让海量数据更容易理解。它操作简单,基于浏览器的用户界面可以快速创建仪表板实时显示Elasticsearch查询动态。设置Kibana非常简单。无需编码或者额外的基础构架,几分钟内就可以完成Kibana安装并启动Elasricsearch索引检测。
下载:https://mirrors.huaweicloud.com/kibana/?C=N&O=D
需要和es版本对应
进入bin目录,启动服务
中文包在:kibana-7.6.1-windows-x86_64\x-pack\plugins\translations\translations
ElasticSearch是面向文档型的数据库,一条数据在这里就是一个文档。比如:
{
"name" : "John",
"sex" : "Male",
"age" : 25,
"birthDate": "1990/05/01",
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
在MySql中这样的数据存储容易想到建立一张User表,其中有一些字段,而在es中就是一个文档,文档会属于一个User类型,各种各样的类型存储于一个索引中。下表是关系型数据库和es的疏于对照表:
elasticsearch是面向文档,关系型数据库和elasticsearch客观的对比!一切都是json
关系型数据库 | ElasticSearch |
---|---|
数据库 | 索引 |
表 | type |
行 | document |
列 | field |
es中可以包含多个索引(数据库),每个索引中可以包含多个类型(表),每个类型下又包含多个文档(行),每个文档又包含多个字段(列)。
es在后台把每个索引划分成多个分片,每个分片可以在集群中的不同服务器中转移。
一个索引类型,包含多个文档,当我们索引一篇文档时,可以通过这样的顺序找到他: 索引-》类型-》文档id(该id实际是个字符串),通过这个组合我们就能索引到某个具体的文档。
es是面向文档的,意味着索引和搜索数据的最小单位是文档,es中,文档有几个重要的属性:
尽管我们可以随意的添加或忽略某个字段,但是,每个字段的类型非常重要。因为es会保存字段和类型之间的映射以及其他的设置。这种映射具体到每个映射的每种类型,这也是为什么在es中,类型有时候也称为映射类型。
类型是文档的逻辑容器,就像关系型数据库一样,表格是行的容器。类型中对于字段的定义称为映射,比如name映射为string类型.我们说文档是无模式的,他们不需要拥有映射中所定义的所有字段,当新增加一个字段时,es会自动的将新字段加入映射,但是这个字段不确定他是什么类型,所以最安全的方式是提前定义好所需要的映射。
就是数据库!
索引是映射类型的容器, elasticsearch中的索引是一个非常大的文档集合。索引存储了映射类型的字段和其他设置。然后它们被存储到了各个分片上了。我们来研究下分片是如何工作的。
节点和分片如何工作
一个集群至少有一 个节点,而一个节点就是一个elasricsearch进程 ,节点可以有多个索引默认的,如果你创建索引,那么索引将会有个5个分片( primary shard ,又称主分片)构成的,每一个主分片会有-一个副本( replica shard ,又称复制分片)
上图是一个有3个节点的集群,可以看到主分片和对应的复制分片都不会在同-个节点内,这样有利于某个节点挂掉了,数据也不至于丢失。实际上, 一个分片是一个Lucene索引, -一个包含倒排索引的文件目录,倒排索引的结构使得elasticsearch在不扫描全部文档的情况下,就能告诉你哪些文档包含特定的关键字。不过,等等,倒排索引是什么鬼?
elasticsearch使用的是一种称为倒排索引的结构,采用Lucene倒排索作为底层。这种结构适用于快速的全文搜索,一个索引由文
档中所有不重复的列表构成,对于每一个词,都有一个包含它的文档列表。 例如,现在有两个文档,每个文档包含如下内容:
Study every day, good good up to forever # 文档1包含的内容
To forever, study every day,good good up # 文档2包含的内容
为创建倒排索引,我们首先要将每个文档拆分成独立的词(或称为词条或者tokens) ,然后创建一一个包含所有不重 复的词条的排序列表,然后列出每个词条出现在哪个文档:
term | doc_1 | doc_2 |
---|---|---|
Study | √ | x |
To | x | x |
every | √ | √ |
forever | √ | √ |
day | √ | √ |
study | x | √ |
good | √ | √ |
every | √ | √ |
to | √ | x |
up | √ | √ |
现在,我们试图搜索 to forever,只需要查看包含每个词条的文档
term | doc_1 | doc_2 |
---|---|---|
to | √ | x |
forever | √ | √ |
total | 2 | 1 |
两个文档都匹配,但是第一个文档比第二个匹配程度更高。如果没有别的条件,现在,这两个包含关键字的文档都将返回。
再来看一个示例,比如我们通过博客标签来搜索博客文章。那么倒排索引列表就是这样的一个结构:
博客文章(原始数据) | 博客文章(原始数据) | 索引列表(倒排索引) | 索引列表(倒排索引) |
博客文章ID | 标签 | 标签 | 博客文章ID |
1 | python | python | 1,2,3 |
2 | python | linux | 3,4 |
3 | linux,python | ||
4 | linux |
如果要搜索含有python标签的文章,那相对于查找所有原始数据而言,查找倒排索引后的数据将会快的多。只需要查看标签这一栏,然后获取相关的文章ID即可。完全过滤掉无关的所有数据,提高效率!
在elasticsearch中,索引(库)这个词被频繁使用,这就是术语的使用。在elasticsearch中 ,索引被分为多个分片,每份分片是-个Lucene的索引。所以一个elasticsearch索引是由多 个Lucene索引组成的。别问为什么,谁让elasticsearch使用Lucene作为底层呢!如无特指,说起索引都是指elasticsearch的索引。
接下来的一切操作都在kibana中Dev Tools下的Console里完成。基础操作!
什么是IK分词器 ?
分词:即把一-段中文或者别的划分成一个个的关键字,我们在搜索时候会把自己的信息进行分词,会把数据库中或者索引库中的数据进行分词,然后进行一个匹配操作,默认的中文分词是将每个字看成一个词,比如“我爱狂神”会被分为"我",“爱”,“狂”,“神” ,这显然是不符合要求的,所以我们需要安装中文分词器ik来解决这个问题。
如果要使用中文,建议使用ik分词器!
IK提供了两个分词算法: ik_ smart和ik_ max_ word ,其中ik_ smart为最少切分, ik_ max_ _word为最细粒度划分!一会我们测试!
什么是IK分词器:
把一句话分词
如果使用中文:推荐IK分词器
两个分词算法:ik_smart(最少切分),ik_max_word(最细粒度划分)
感觉像大学时《编译原理》课程里面的词法分析器
GET _analyze
{
"analyzer": "ik_smart",
"text": "家和万事兴"
}
{
"tokens" : [
{
"token" : "家和万事兴",
"start_offset" : 0,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 0
}
]
}
GET _analyze
{
"analyzer": "ik_max_word",
"text": "家和万事兴"
}
{
"tokens" : [
{
"token" : "家和万事兴",
"start_offset" : 0,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "家和",
"start_offset" : 0,
"end_offset" : 2,
"type" : "CN_WORD",
"position" : 1
},
{
"token" : "万事兴",
"start_offset" : 2,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "万事",
"start_offset" : 2,
"end_offset" : 4,
"type" : "CN_WORD",