- DataWhale 二月组队学习-深入浅出pytorch-Task04
-273.15K
DataWhale组队学习学习pytorch人工智能
一、自定义损失函数1.损失函数的作用与自定义意义在深度学习中,损失函数(LossFunction)用于衡量模型预测结果与真实标签之间的差异,是模型优化的目标。PyTorch内置了多种常用损失函数(如交叉熵损失nn.CrossEntropyLoss、均方误差nn.MSELoss等)。但在实际任务中,可能需要针对特定问题设计自定义损失函数,例如:处理类别不平衡问题(如加权交叉熵)实现特殊业务需求(如对
- 大模型核心概念 | 嵌入模型(Embedding)、向量模型(Vector Model)
一、核心概念解析1.1嵌入模型(Embedding)作为AI领域的核心基础技术,嵌入模型通过将非结构化数据映射为低维稠密向量,实现语义特征的深度捕捉:文本嵌入:如将语句转换为1536维向量,使"机器学习"与"深度学习"的向量余弦相似度达0.92跨模态嵌入:支持图像与文本的联合向量空间映射,如CLIP模型实现文图互搜1.2向量模型(VectorModel)作为嵌入技术的下游应用体系,主要包含两大方向
- Python实现神经网络算法指南
代码编织匠人
python神经网络算法
Python实现神经网络算法指南神经网络是一种模拟人脑神经元结构进行信息处理的机器学习算法。在深度学习领域中,神经网络是最为强大的算法之一。Python作为一门简单易学的编程语言,也成为了许多人选择实现神经网络算法的首选语言。在本篇文章中,我们将通过Python代码来实现神经网络算法。导入必要的库为了实现神经网络算法,我们需要导入一些必要的Python库,包括numpy和matplotlib。其中
- 基于DTLC-AEC与DTLN的轻量级实时语音增强系统设计与实现
神经网络15044
仿真模型神经网络机器学习图像处理cnn人工智能机器人
基于DTLC-AEC与DTLN的轻量级实时语音增强系统设计与实现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。1.引言在当今的互联网通信时代,实时语音通信已成为人们日常生活中不可或缺的一部分。然而,语音通信质量常常受到回声、背景噪声等因素的严重影响。为了解决这些问题,我们需要高效的语音增强技术。本文将详细介绍如何将DTLC-AEC(深度学习回声消
- Git CLI高危任意文件写入漏洞(CVE-2025-48384)PoC已公开
FreeBuf-
git
GitCLI(命令行界面)中存在一个高危漏洞,攻击者可利用该漏洞在Linux和macOS系统上实现任意文件写入。目前该漏洞的概念验证(PoC)利用代码已公开。该漏洞编号为CVE-2025-48384,CVSS严重性评分为8.1分(满分10分)。当用户执行gitclone--recursive命令克隆恶意仓库时,攻击者可借此实现远程代码执行。**关键要点**1.CVE-2025-48384(CVSS
- 国产IP摄像头存在隐蔽后门,攻击者可获取Root权限
FreeBuf-
tcp/ip安全web安全
漏洞概述ShenzhenLiandianCommunicationTechnologyLTD生产的某款IP摄像头被曝存在高危漏洞(CVE-2025-7503)。该漏洞获得CVSSv4满分10分评级,攻击者可通过未公开的Telnet服务获取设备root权限,对隐私安全构成严重威胁。技术细节漏洞存在于摄像头固件(AppFHE1_V1.0.6.0)及其配套内核(KerFHE1_PTZ_WIFI_V3.1
- 2025年UDP应用抗洪指南:从T级清洗到AI免疫,实战防御UDP洪水攻击
一次未防护的UDP暴露,可能让日活百万的应用瞬间瘫痪,损失超千万2025年,随着物联网僵尸网络规模指数级增长及AI驱动的自适应攻击工具泛滥,UDP洪水攻击峰值已突破8Tbps,单次攻击成本却降至50元以下。更致命的是,70%的UDP攻击伴随CC攻击形成混合打击,传统防护体系几近失效。本文将揭秘攻击者最新武器库,并分享一套经头部企业验证的立体化防御方案。一、2025年UDP洪水攻击的三大致命升级1.
- 2025阿里云黑洞自救指南:从分钟级恢复到长效免疫的实战方案
一次未防护的DDoS攻击,可致业务停摆72小时,损失超千万!2025年,随着AI驱动的DDoS攻击工具泛滥及僵尸网络商业化,阿里云服务器被拉入黑洞的案例激增300%。当攻击流量超过实例阈值(5Gbps-300Gbps)时,阿里云会强制屏蔽IP公网访问——这不是惩罚,而是保全云平台整体的“断臂求生”。本文将提供一套经过头部企业验证的应急方案,涵盖从5分钟快速恢复到构建免疫体系的全流程。一、2025黑
- 目标检测-YOLOv5
wydxry
深度学习目标检测YOLO人工智能深度学习
YOLOv5介绍YOLOv5是YOLO系列的第五个版本,由Ultralytics团队发布。虽然YOLOv5并非JosephRedmon原团队发布,但它在YOLOv4的基础上进行了重要的优化和改进,成为了深度学习目标检测领域中的热门模型之一。YOLOv5的优势不仅体现在其性能上,还包括其简洁易用、部署便捷的特点。相较于YOLOv4,YOLOv5对于代码框架的重构、推理速度的提升,以及模型的轻量化等方
- 【DW11月-深度学习】Task03前馈神经网络
沫2021
参考链接:https://datawhalechina.github.io/unusual-deep-learning/#/4.%E5%89%8D%E9%A6%88%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C一、神经元模型2.1神经元1943年,美国神经生理学家沃伦·麦卡洛克(WarrenMcCulloch)和数学家沃尔特·皮茨(WalterPitts)对生物神经元进行
- 面对微软AD的安全隐患,宁盾身份域管如何设计安全性
宁盾Nington
安全
微软AD域安全漏洞带来的痛点部分企业客户选择宁盾身份域管的重要动因之一,正是微软AD域及WindowsServer长期存在的安全隐患。在微软AD域信创整改项目中,“宁盾如何保障加域计算机终端安全”是被高频问及的关键问题。微软AD域作为企业组织身份验证与权限管理的核心系统,一旦遭受攻击,可能引发全域性安全风险,其典型渗透路径可归纳为以下四类:特权提升攻击:攻击者利用漏洞从普通用户提升到域管理员等特权
- 不和旁人生气,活出修养
北悟渊涯
一条蛇爬过一根锯子,不慎被割伤,它很生气,转身狠狠地咬住了锯子。结果不出意外,嘴被割破了。蛇愤怒了,它认为锯子在攻击自己,于是它用整个身子缠住锯子,用尽全身力气想令其窒息。或许这条蛇到死都没明白,真正害死它的并非锯子,而是自己的坏情绪。控制不了情绪,它就会吞噬我们自己。放眼过去,那些取得成就的人,都懂得控制好自己的脾气。因为他们会判断怎样对自己有益,而不是凭着自己的性子做事。情绪人人都有,将它爆发
- 仓库货物检测:基于YOLOv5的深度学习应用与UI界面开发
YOLO实战营
YOLO深度学习ui目标跟踪目标检测人工智能
一、引言随着电商和物流行业的快速发展,仓库货物管理已经成为企业运营中至关重要的环节。为了提高仓库管理的效率和准确性,越来越多的企业开始应用自动化技术来完成货物的盘点、分类、分拣等任务。传统的货物管理方式通常依赖人工检查,不仅效率低下,而且容易出现误差。为了克服这些问题,利用计算机视觉和深度学习技术来实现仓库货物的自动化检测成为了一种有效的解决方案。本博客将介绍如何使用YOLOv5进行仓库货物检测,
- Transformer:自注意力驱动的神经网络革命引擎
大千AI助手
人工智能Python#OTHERtransformer神经网络深度学习google人工智能机器学习大模型
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从语言理解到多模态智能的通用架构基石⚙️一、核心定义与历史意义Transformer是由Google团队在2017年论文《AttentionIsAllYouNeed》中提出的深度学习架构,其颠覆性创新在于:完全摒弃RNN/CNN:仅依赖自注意力机制(S
- [特殊字符] LLM(大型语言模型):智能时代的语言引擎与通用推理基座
大千AI助手
人工智能Python#OTHER语言模型人工智能自然语言处理LLM大模型Transformer
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从千亿参数到人类认知的AI革命一、核心定义与核心特征LLM(LargeLanguageModel)是基于海量文本数据训练的深度学习模型,通过神经网络架构(尤其是Transformer)模拟人类语言的复杂规律,实现文本理解、生成与推理任务。其核心特征可概
- 卷积神经网络-数据增强
红米煮粥
cnn人工智能神经网络
文章目录一、概述二、数据增强的类别1.裁剪2.翻转和旋转3.随机遮挡4.图像变换5.对transforms的选择操作,使数据增强更灵活三、应用场景四、总结一、概述数据增强(也叫数据扩增)的目的是为了扩充数据和提升模型的泛化能力。有效的数据扩充不仅能扩充训练样本数量,还能增加训练样本的多样性,一方面可避免过拟合,另一方面又会带来模型性能的提升。二、数据增强的类别1.裁剪中心裁剪:transforms
- 深度学习模型开发部署全流程:以YOLOv11目标检测任务为例
你喜欢喝可乐吗?
deeplearningdeploy深度学习YOLO目标检测
深度学习模型开发部署全流程:以YOLOv11目标检测任务为例深度学习模型从开发到部署的完整流程包含需求分析、数据准备、模型训练、模型优化、模型测试和部署运行六大核心环节。YOLOv11作为新一代目标检测模型,不仅延续了YOLO系列的高效实时性能,还在检测精度和泛化能力上取得显著突破,使其成为工业质检、安防监控、自动驾驶等领域的理想选择。本文将详细阐述这一完整流程,并结合YOLOv11的具体实现,提
- 预测导管原位癌浸润性复发的深度学习:利用组织病理学图像和临床特征
浪漫的诗人
论文深度学习人工智能
文章目录研究内容目的方法数据集模型开发模型训练与评估外部验证统计分析研究结果模型性能风险分层外部验证特征重要性原文链接原文献:Deeplearningforpredictinginvasiverecurrenceofductalcarcinomainsitu:leveraginghistopathologyimagesandclinicalfeatures研究背景【DCIS与IBC的关联】乳腺导管
- 零信任产品联合宁盾泛终端网络准入,打造随需而变、精准贴合业务的网络安全访问体系
宁盾Nington
安全
零信任网络访问控制(ZeroTrustNetworkAccess,ZTNA,文中零信任皆指ZTNA)基于“永不信任,持续验证”的理念,打破了企业基于传统网络边界进行防护的固有模式。在当前日趋复杂的网络环境下,内部威胁与外部攻击加剧,零信任能够为企业构建一个动态的安全访问体系。通过持续身份验证、权限动态调整等机制,确保合法用户在安全的环境下访问企业资源,有效防止未授权访问与数据泄露,提升企业整体信息
- 提高互联网Web安全性:避免越权漏洞的技术方案
码农老起
安全加密算法web安全安全
目录一、越权漏洞概述二、常见的越权漏洞类型三、越权漏洞的影响四、越权漏洞的技术解决方案一、越权漏洞概述越权(AuthorizationBypass)类漏洞是指在系统中,攻击者通过绕过身份验证或访问控制,获取本不应访问的资源或执行本不应执行的操作。简单来说,越权漏洞发生时,用户能够访问或操作超出其授权范围的数据或功能。在Web应用中,越权漏洞通常出现在访问控制机制不严密、权限检查不充分或不正确的情况
- 基于vue+Cesium实现交互式攻击箭头绘制
引言在地理信息系统(GIS)和军事模拟领域,箭头绘制是一项基础且重要的功能。本文将介绍如何使用Cesium.js结合Vue框架实现交互式攻击箭头绘制功能,支持鼠标点击采集关键点、动态更新箭头形状、右键结束绘制等核心交互,并对实现过程中的关键技术点进行深入解析。功能概述本组件实现了以下核心功能:地图初始化与基础配置鼠标左键点击采集箭头关键点鼠标移动实时更新箭头形状右键点击结束绘制并输出结果动态渲染箭
- 深度学习:让 AI 拥有 “思考” 能力的核心技术
田园Coder
人工智能科普人工智能科普
1.深度学习:突破传统的AI“进阶版”1.1什么是深度学习?深度学习是机器学习的一个分支,它通过模拟人脑神经网络的多层结构,让AI能够自动学习数据中的复杂特征,从而完成更高级的认知任务。例如,传统机器学习需要人类手动提取“猫有尖耳朵、胡须”等特征,而深度学习能直接从原始图片中,自主学习从像素到轮廓、再到整体形态的多层特征,最终实现更精准的识别。这种“自主提取特征”的能力,让深度学习突破了传统AI的
- AI产品经理面试宝典第18天:AI思维矩阵构建与实战应用面试题与答法
TGITCIC
AI产品经理一线大厂面试题产品经理面试AI产品经理面试大模型产品经理面试AI面试大模型面试
如何构建AI思维矩阵?产品经理的"降维攻击"密码面试官:请解释什么是AI思维矩阵?作为产品经理如何构建这种思维?你的回答:AI思维矩阵不是技术架构,而是产品经理在AI时代的核心认知框架。它包含四个关键维度:软硬结合创新:如智能音箱通过硬件采集语音数据,软件优化交互体验,形成闭环数据驱动决策:在智能客服场景中,通过用户对话数据优化意图识别模型,实现NLU准确率提升30%生态协同视角:以智能家居为例,
- PyTorch torch.no_grad() 指南(笔记)
拉拉拉拉拉拉拉马
pytorch人工智能python笔记深度学习
PyTorchtorch.no_grad()权威在PyTorch深度学习框架中,高效的显存管理对于训练复杂模型和执行大规模推理任务至关重要。显存不足(OutOfMemory,OOM)错误是开发者经常面临的挑战之一。torch.no_grad()作为PyTorch提供的一个核心工具,能够在推理(inference)和验证(validation)阶段显著优化显存使用并提升计算速度。本报告旨在全面、深入
- 【深度学习基础】PyTorch中model.eval()与with torch.no_grad()以及detach的区别与联系?
目录1.核心功能对比2.使用场景对比3.区别与联系4.典型代码示例(1)模型评估阶段(2)GAN训练中的判别器更新(3)提取中间特征5.关键区别总结6.常见问题与解决方案(1)问题:推理阶段显存爆掉(2)问题:Dropout/BatchNorm行为异常(3)问题:中间张量意外参与梯度计算7.最佳实践8.总结以下是PyTorch中model.eval()、withtorch.no_grad()和.d
- 初识linux
贩卖纯净水.
Linuxlinux
Linux从哪里来?(东土大唐)它是怎么发展的?(一个筋斗云翻身)历史沿革我是程序猿,你是运动员,我们都有缘。作为一个码农,有一些计算机界的“常识”是需要了解的。计算机是在什么时候诞生的呢?又是在一个怎样的背景下,计算机诞生了呢?计算机的发明其实早期的计算机是为了给军事提供支持才被发明出来的,被用于计算导弹弹道轨迹。在美苏冷战时期,军备竞赛转变为科技竞赛,计算机于对抗中产生,首先应用于军事。计算机
- CVE-2005-4900:TLS SHA-1 安全漏洞修复详解
Nova_CaoFc
运维日常技术博文分享安全linux服务器运维
前言在信息安全日益重要的当下,任何微小的加密弱点都可能被攻击者利用,从而导致数据泄露、流量劫持或更严重的业务中断。本文将结合实际环境中常见的Nginx配置示例,深入剖析CVE-2005-4900(TLS中使用SHA-1哈希算法)的危害,并提供完整、可操作的修复流程。一、什么是CVE-2005-4900漏洞CVE-2005-4900定位于TLS协议中使用SHA-1作为消息认证和签名哈希算法的安全漏洞
- 基于生成对抗网络增强主动学习的超高温陶瓷硬度优化
神经网络15044
深度学习算法仿真模型生成对抗网络学习人工智能
复现论文:基于生成对抗网络增强主动学习的超高温陶瓷硬度优化我将使用Python复现这篇关于使用生成对抗网络(GAN)增强主动学习来优化超高温陶瓷(UHTC)硬度的研究论文。以下是完整的实现代码和解释。1.环境准备和数据加载首先,我们需要准备必要的Python库并加载数据。importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimpor
- 挖矿病毒(基于SMB漏洞传播)分析
艾旎米提颉
本文旨在对SMB挖矿病毒传播机制做分析。网络中的计算机出现由SMB漏洞传播的挖矿病毒,基于目前黑客技术上流行的非PE攻击模式。攻击性质较为隐蔽,完全依赖Windows本身的系统组件。攻击目的较为单一,即通过消耗系统资源集中算力挖矿牟利。本次着重分析的基于WindowsPowerShell的挖矿模式,是基于网页挖矿的一种分支。较早的时候还是基于JS。从攻击者的角度分析,JS过度依赖浏览器,相比Pow
- 什么是高防 IP?从技术原理到实战部署的深度解析
快快网络-三七
业务安全服务器ip快快网络高防IP快快云弹性云云计算
目录前言一、高防IP的定义与核心价值二、高防IP的技术原理与架构2.1流量牵引技术2.2流量清洗引擎2.3回源机制三、高防IP的核心防护技术详解3.1DDoS攻击防御技术3.2高防IP的弹性带宽设计四、实战:基于Linux的高防IP环境配置4.1配置高防IP回源白名单4.2配置TCP抗攻击参数4.3高防IP与Nginx的配合配置五、高防IP的选型与部署建议总结前言在网络攻击日益频繁的今天,DDoS
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod