这是我们原本的秒杀思路,其中的流程都要经过mysql数据库,而mysql数据库的并发性能不是很好,而且为了避免线程安全问题,还加入了分布式锁,所以整个流程的性能不好,现在我们要去优化它。
我们可以把这整个流程比作一个餐馆点菜的过程,前台点菜并将菜品写在小票上,给顾客一份,后厨一份,后厨根据小票的内容依次做菜
根据这个例子,我们的流程也可以分为两个部分:
两个部分各自为一个线程,主线程判断秒杀资格,如果用户有资格,就开启一个独立线程完成耗时较久的第二部分
同时,我们也要优化判断秒杀资格的性能,将库存和订单存入redis中,如果判断用户有资格,先将优惠券id,用户id、订单id保存在阻塞队列中,并将订单id返回给用户,用户可以通过这个订单id完成支付操作,虽然此时还没有创建订单,但是在队列中迟早会创建,之后开启独立线程读取队列中的信息,完成下单。
现在的业务流程变成了在redis中判断秒杀资格,保存信息在队列中并返回订单id,性能和吞吐量大大提高
现在讨论这两个东西需要什么样的结构去存储
因为库存只是一个数值,我们使用redis中的string类型去存储,key是优惠券的id,value是库存
到时只需判断库存是否大于0,如果用户有资格,库存要减一,相当于在redis中预减库存
因为需要一个优惠券id(key)能存很多用户id,而且用户id不能重复,所以订单信息我们使用set结构存储
到时只需看value中是否有该用户id来判断该用户是否下过单
为了保证过程的原子性,需要用到lua脚本,通过执行lua脚本后的结果来返回异常信息或者订单id,这样创建订单的时效性就没有那么强了,完全可以照着数据库能承受的范围去执行写的操作,用户只需要订单id就能完成支付操作
修改添加秒杀优惠券的方法,将优惠券信息保存在redis中
@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
// 保存优惠券
save(voucher);
// 保存秒杀信息
SeckillVoucher seckillVoucher = new SeckillVoucher();
seckillVoucher.setVoucherId(voucher.getId());
seckillVoucher.setStock(voucher.getStock());
seckillVoucher.setBeginTime(voucher.getBeginTime());
seckillVoucher.setEndTime(voucher.getEndTime());
seckillVoucherService.save(seckillVoucher);
// 保存优惠券信息到redis
stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}
添加一个秒杀优惠券
{
"title": "120元代金券",
"beginTime": "2023-11-01T01:11:11",
"actualValue": 12000,
"shopId": 1,
"subTitle": "周一至周五均可使用",
"payValue": 10000,
"stock": 100,
"endTime": "2024-11-01T01:11:11",
"type": 1,
"rules": "全场通用\\n无需预约\\n可无限叠加\\不兑现、不找零\\n仅限堂食"
}
写lua脚本
-- 1. 参数列表
-- 1.1 优惠券id
local voucherId = ARGV[1];
-- 1.2 用户id
local userId = ARGV[2];
-- 2. key
-- 2.1 库存key
local stockKey = "seckill:stock" .. voucherId;
-- 2.2 订单key
local orderKey = "seckill:order" .. voucherId;
-- 3. 脚本业务
-- 判断库存是否充足
if (tonumber(redis.call('get',stockKey)) <= 0) then
-- 库存不足
return 1
end
-- 判断用户是否下单
if (redis.call('sismember',orderKey,userId) == 1) then
-- 用户下过单
return 2
end
-- 扣减库存
redis.call('incrby',stockKey,-1);
-- 下单,保存用户id到set集合
redis.call('sadd',orderKey,userId);
重写秒杀逻辑
private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
//初始化脚本
static {
SECKILL_SCRIPT = new DefaultRedisScript();
//读取文件位置,classpath就是resource
SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
SECKILL_SCRIPT.setResultType(Long.class);
}
@Override
public Result seckillVoucher(Long voucherId) {
// 获取用户id
Long userId = UserHolder.getUser().getId();
// 1. 调用lua脚本
//不需要传key,所以传个空集合
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(),userId.toString()
);
int intValue = result.intValue();
//2. 判断结果是否为0
if (intValue != 0) {
return Result.fail(intValue == 1 ? "库存不足" : "不要重复下单");
}
//3. 将优惠券id,用户id、订单id保存在阻塞队列中
//TODO 将优惠券id,用户id、订单id保存在阻塞队列中
long orderId = redisIdWorker.nextId("order");
//4. 返回订单id
return Result.ok(orderId);
}
//阻塞队列
private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
阻塞队列BlockingQueue,当一个线程尝试从一个阻塞队列中获取元素,如果队列中没有元素,这个线程就会被阻塞,当队列中有元素时就会被唤醒并获取元素
seckillVoucher中添加:
//3.2 放入阻塞队列中
orderTasks.add(order);
@PostConstruct 注解效果是当前类初始化完就去执行
//线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
//类加载完就执行
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
//1.获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
//2.创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("订单异常:" + e);
}
}
}
}
注1:在这个方法中不能使用threadlocal去获取用户信息,因为是异步下单,这是一个子线程,不是主线程,没有用户的信息,所以从订单中获取用户id
注2:与上同理,在这个子线程中也无法获取到代理对象,将代理对象设置为成员变量,再从主线程中获取到代理对象
private void handleVoucherOrder(VoucherOrder voucherOrder) {
Long userId = voucherOrder.getUserId();
//创建锁对象
RLock redisLock = redissonClient.getLock("lock:order:" + userId);
//获取锁方法
boolean lockFlag = redisLock.tryLock();
//判断是否获取成功
if (!lockFlag) {
log.error("不要重复下单");
return;
}
//事务方法执行起来可能会出现异常,但最后都要释放锁,所以try-catch起来
try {
proxy.createVoucherOrder(voucherOrder);
} finally {
redisLock.unlock();
}
}
@Transactional
public void createVoucherOrder(VoucherOrder voucherOrder) {
//5.一人一单
Long userId = UserHolder.getUser().getId();
//查询
Integer count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
//判断订单是否存在
if (count > 0) {
log.error("用户已经购买过一次");
return;
}
//6.扣减库存
boolean success = seckillVoucherService.update().setSql("stock = stock-1")
.eq("voucher_id", voucherOrder.getVoucherId())
.gt("stock", 0)
.update();
if (!success) {
log.error("不要重复下单");
return;
}
save(voucherOrder);
}
整个流程是:
发送请求进入seckillVoucher方法,先判断用户是否有秒杀的资格(通过lua脚本),然后创建订单(将用户id、优惠券id、订单id放进订单里),将订单放入阻塞队列
在类初始化的时候去执行线程池,线程池的任务是是不断地从队列中获取订单信息,然后去创建订单。
创建订单先获取锁,再判断一人一单,减库存,最后执行添加订单方法
完整代码:
/**
*
* 服务实现类
*
*
* @author 虎哥
* @since 2021-12-22
*/
@Slf4j
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {
@Autowired
private ISeckillVoucherService seckillVoucherService;
@Autowired
private RedisIdWorker redisIdWorker;
@Autowired
private StringRedisTemplate stringRedisTemplate;
@Autowired
private RedissonClient redissonClient;
private IVoucherOrderService proxy;
private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
//初始化脚本
static {
SECKILL_SCRIPT = new DefaultRedisScript();
//读取文件位置,classpath就是resource
SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
SECKILL_SCRIPT.setResultType(Long.class);
}
//阻塞队列
private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
//线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
//类加载完就执行
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
//1.获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
//2.创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("订单异常:" + e);
}
}
}
}
private void handleVoucherOrder(VoucherOrder voucherOrder) {
Long userId = voucherOrder.getUserId();
//创建锁对象
RLock redisLock = redissonClient.getLock("lock:order:" + userId);
//获取锁方法
boolean lockFlag = redisLock.tryLock();
//判断是否获取成功
if (!lockFlag) {
log.error("不要重复下单");
return;
}
//事务方法执行起来可能会出现异常,但最后都要释放锁,所以try-catch起来
try {
proxy.createVoucherOrder(voucherOrder);
} finally {
redisLock.unlock();
}
}
@Override
public Result seckillVoucher(Long voucherId) {
// 获取用户id
Long userId = UserHolder.getUser().getId();
// 1. 调用lua脚本
//不需要传key,所以传个空集合
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString()
);
int intValue = result.intValue();
//2. 判断结果是否为0
if (intValue != 0) {
return Result.fail(intValue == 1 ? "库存不足" : "不要重复下单");
}
//3. 将优惠券id,用户id、订单id保存在阻塞队列中
//3.1.创建订单
VoucherOrder order = new VoucherOrder();
//3.1.1 订单id
long orderId = redisIdWorker.nextId("order");
order.setId(orderId);
//3.1.2 用户id
order.setUserId(userId);
//3.1.3 优惠券id
order.setVoucherId(voucherId);
//3.2 放入阻塞队列中
orderTasks.add(order);
//3.3 获取当前的代理对象(事物)
proxy = (IVoucherOrderService) AopContext.currentProxy();
//4. 返回订单id
return Result.ok(orderId);
}
@Transactional
public void createVoucherOrder(VoucherOrder voucherOrder) {
//5.一人一单
Long userId = voucherOrder.getUserId();
//查询
Integer count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
//判断订单是否存在
if (count > 0) {
log.error("用户已经购买过一次");
return;
}
//6.扣减库存
boolean success = seckillVoucherService.update().setSql("stock = stock-1")
.eq("voucher_id", voucherOrder.getVoucherId())
.gt("stock", 0)
.update();
if (!success) {
log.error("不要重复下单");
return;
}
save(voucherOrder);
}
}
现在我们的阻塞队列使用的是jvm的内存,将来有无数的请求进来,内存可能会满,而且如果服务重启或者宕机,订单信息就消失了,可能会出现一些问题,接下来学习一下redis的消息队列
消息队列,字面意思就是存放消息的队列,最简单的消息队列包含三个角色
市面上有很多的消息队列的产品,但是搭建他们也是需要成本的,既然我们已经搭建起了redis集群,为了减少成本,可以使用redis提供的三种不同的方式
Redis的list数据结构是一个双向链表,很容易模拟出队列效果。
队列是入口和出口不在一边,因此我们可以利用: LPUSH 结合 RPOP、或者 RPUSH 结合LPOP来实现。
不过要注意的是,当队列中没有消息时RPOP或LPOP操作会返回null,并不像VM的阻塞队列那样会阻塞并等待消息。因此这里应该使用BRPOP或者BLPOP来实现阻塞效果。
优点:
缺点:
Pubsub(发布订阅)是Redis2.0版本引入的消息传递模型。顾名思义,消费者可以订阅一个或多个channel,生产者向对应channel发送消息后,所有订阅者都能收到相关消息
优点:
缺点:
Stream是Redis5.0引入的一种新数据类型,可以实现一个功能非常完善的消息队列
示例:
xadd users * name zhuyi love lvhan
返回id
示例:
从第一个消息开始读
因为消息已经读过,没有最新的消息,所以读不出来
特点:
消费者组,将多个消费者划分到一个组中,监听同一个队列,有以下好处:
我们获取到消息消费后,一定要确认它,把他从pending-list中移除
如果你的公司业务比较庞大,对消息队列要求比较严格,还是建议使用更专业的消息队列,如rabbitmq等,但如果是中小型公司,对消息队列需要没那么大,redis的stream就已经能满足需求了
XGROUP CREATE stream.orders g1 0 mkstream
修改lua脚本:
主要添加了一个订单id的参数,在业务的最后向队列发送消息
-- 1. 参数列表
-- 1.1 优惠券id
local voucherId = ARGV[1]
-- 1.2 用户id
local userId = ARGV[2]
-- 1.3 订单id
local orderId = ARGV[3]
-- 2. key
-- 2.1 库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2 订单key
local orderKey = 'seckill:order:' .. voucherId
-- 3. 脚本业务
-- 判断库存是否充足
if (tonumber(redis.call('get',stockKey)) <= 0) then
-- 库存不足
return 1
end
-- 判断用户是否下单
if (redis.call('sismember',orderKey,userId) == 1) then
-- 用户下过单
return 2
end
-- 扣减库存
redis.call('incrby',stockKey,-1);
-- 下单,保存用户id到set集合
redis.call('sadd',orderKey,userId);
-- 发送消息
redis.call('xadd','stream.orders','*','voucherId',voucherId,'userId',userId,'id',orderId)
return 0
修改一下调用lua脚本的逻辑:
新添加一个订单id的参数
// 1. 调用lua脚本
//不需要传key,所以传个空集合
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString(),String.valueOf(orderId)
);
int intValue = result.intValue();
在原有的线程任务逻辑上修改,从消息队列中获取订单信息,判断一下订单信息是否为空,如果为空,说明没有消息,继续下一次循环,如果有,去解析数据,拿到订单,通过以前写过的createVoucherOrder()方法来创建订单,最后一定要确认消息,将消息从pending-list中移除。
如果在执行时出现了错误或者服务宕机,通过handlePendingList()方法处理pending-list中已消费但未确认的订单,这里如果出现异常,就不用再调用这个方法了
private class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
// 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
StreamOffset.create("stream.orders", ReadOffset.lastConsumed())
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有消息,继续下一次循环
continue;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
handleVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("stream.orders", "g1", record.getId());
} catch (Exception e) {
log.error("处理订单异常", e);
handlePendingList();
}
}
}
private void handlePendingList() {
while (true) {
try {
// 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1),
StreamOffset.create("stream.orders", ReadOffset.from("0"))
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有异常消息,结束循环
break;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
handleVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("stream.orders", "g1", record.getId());
} catch (Exception e) {
log.error("处理订单异常", e);
}
}
}
}
XACK确认消息:
stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());