数据增强让模型更健壮

在做一些图像分类训练任务时,我们经常会遇到一个很尴尬的情况,那就是:

明明训练数据集中有很多可爱猫咪的照片,但是当我们给训练好的模型输入一张戴着头盔的猫咪进行测试时,模型就不认识了,或者说识别精度很低。

数据增强让模型更健壮_第1张图片

很明显,模型的泛化能力太差,难道戴着头盔的猫咪就不是猫咪了吗?

今天就来说一个可以解决这类尴尬问题的方法,不需要从模型算法上下功夫,而是从训练数据集上下功夫。

那就是数据增强,查看链接:数据增强让模型更加鲁棒。

1、什么是数据增强

数据增强是一种通过对原始数据集进行变换,生成新的训练样本的技术。

这些变换包括图像翻转、旋转、缩放、裁剪以及其他各种手法。

通过引入这些变化,可以有效地扩充数据集的规模,提高模型的泛化能力。

是不是很简单?

将原始数据集做一些变换然后送给模型做训练,此时裁

你可能感兴趣的:(CV视觉算法入门与调优,人工智能,深度学习,计算机视觉)