R语言量化投资相关

R语言在金融领域提供了很多的金融计算框架和工具,当你具备金融理论知识和市场经验,你可以利用这些第三方提供的技术框架来构建自己的金融模型。我们可以从CRAN上找到各种的金融项目,访问R的官方网站 (https://cran.r-project.org/),找到Task Views 菜单里的 Finance标签。

金融领域涉及得非常广,包括银行业,保险业,信托业,证劵业务,租赁业务。

金融行业都具有指标性,垄断性,高风险性,效益依赖性以及高负债经营性的特点。量化投资是证劵投资一个很细分的专业领域,涉及到的金融工具包其实并不是很多。其实把这些包研究好了,就可以很方便的做量化模型和交易了。

如果构建自己的量化交易系统,需要用到5各方面的工具:数据管理,指标计算,回测交易,投资组合,风险管理。

  1. 数据管理
    包括数据的抓取,存储,读取,时间序列,数据处理。涉及的R包有:
    zoo(时间序列对象), xts(时间序列处理), timeSeries(Rmetrics系时间序列对象) timeDate(Rmetrics系时间序列处理), data.table(数据处理), quantmod(数据下载和图形可视化), RQuantLib(QuantLib数据接口), WindR(Wind数据接口), RJDBC(数据库访问接口), rhadoop(Hadoop访问接口), rhive(Hive访问接口), rredis(Redis访问接口), rmongodb(MongoDB访问接口), SparkR(Spark访问接口),fImport(Rmetrics系数据访问接口)等。

  2. 指标计算:包括金融市场的技术指标的各种计算方法,涉及R包有 TTR(技术指标), TSA(时间序列计算), urca(单位根检验), fArma(Rmetrics系ARMA计算), fAsianOptions(Rmetrics系亚洲期权定价), fBasics(Rmetrics系计算工具), fCopulae(Rmetrics系财务分析), fExoticOptions(Rmetrics系期权计算), fGarch(Rmetrics系Garch模型), fNonlinear(Rmetrics系非线模型), fOptions(Rmetrics系期权定价), fRegression(Rmetrics系回归分析), fUnitRoots(Rmetrics系单位根检验) 等。

  3. 回测交易:包括金融数据建模,并验证用历史数据验证模型的可靠性,涉及R包有 FinancialInstrument(金融产品), quantstrat(策略模型和回测), blotter(账户管理), fTrading(Rmetrics系交易分析)等。

  4. 投资组合:对多策略或多模型进行管理和优化,涉及R包有 PortfolioAnalytics(组合分析和优化), stockPortfolio(股票组合管理), fAssets(Rmetrics系组合管理)等

  5. 风险管理:对持仓进行风险指标的计算和风险提示,涉及R包有 PerformanceAnalytics(风险分析),fPortfolio(Rmetrics系组合优化), fExtremes(Rmetrics系数据处理)等。

image.png

你可能感兴趣的:(R语言量化投资相关)