目录
跳表
如何理解“跳表”?
用跳表查询到底有多快?
跳表是不是很浪费内存?
高效的动态插入和删除
跳表索引动态更新
支持快速的插入、删除、查找操作,写起来也不复杂,甚至可以替代红黑树
对于一个单链表来讲,即便链表中存储的数据是有序的,如果我们要想在其中查找某个数据,也只能从头到尾遍历链表。这样查找效率就会很低,时间复杂度会很高,是O(n)。
那怎么来提高查找效率呢?如果像图中那样,对链表建立一级“索引”,查找起来是不是就会更快一些呢?每两个结点提取一个结点到上一级,我们把抽出来的那一级叫作索引或索引层。你可以看我画的图。图中的down表示down指针,指向下一级结点。
如果现在要查找某个结点,比如16。我们可以先在索引层遍历,当遍历到索引层中值为13的结点时,我们发现下一个结点是17,那要查找的结点16肯定就在这两个结点之间。然后我们通过索引层结点的down指针,下降到原始链表这一层,继续遍历。这个时候,我们只需要再遍历2个结点,就可以找到值等于16的这个结点了。这样,原来如果要查找16,需要遍历10个结点,现在只需要遍历7个结点。
从这个例子里,加来一层索引之后,查找一个结点需要遍历的结点个数减少了,也就是说查找效率提高了。
在第一级索引的基础之上,每两个结点就抽出一个结点到第二级索引。现在我们再来查找16,只需要遍历6个结点了,需要遍历的结点数量又减少了。当数据量比较大时,跳表带来的性能优化是十分可观的:
从图中我们可以看出,原来没有索引的时候,查找62需要遍历62个结点,现在只需要遍历11个结点,速度是不是提高了很多?所以,当链表的长度n比较大时,比如1000、10000的时候,在构建索引之后,查找效率的提升就会非常明显。
如果链表里有n个结点,会有多少级索引呢?
每两个结点会抽出一个结点作为上一级索引的结点,那第一级索引的结点个数大约就是n/2,第二级索引的结点个数大约就是n/4,第三级索引的结点个数大约就是n/8,依次类推,也就是说,第k级索引的结点个数是第k-1级索引的结点个数的1/2,那第k级索引结点的个数就是n/(2k)。
假设索引有h级,最高级的索引有2个结点。通过上面的公式,我们可以得到n/(2h)=2,从而求得h=log2n-1。如果包含原始链表这一层,整个跳表的高度就是log2n。我们在跳表中查询某个数据的时候,如果每一层都要遍历m个结点,那在跳表中查询一个数据的时间复杂度就是O(m*logn)。
那这个m的值是多少呢?按照前面这种索引结构,我们每一级索引都最多只需要遍历3个结点,也就是说m=3,为什么是3呢?
假设要查找的数据是x,在第k级索引中,我们遍历到y结点之后,发现x大于y,小于后面的结点z,所以我们通过y的down指针,从第k级索引下降到第k-1级索引。在第k-1级索引中,y和z之间只有3个结点(包含y和z),所以,我们在K-1级索引中最多只需要遍历3个结点,依次类推,每一级索引都最多只需要遍历3个结点。
比起单纯的单链表,跳表需要存储多级索引,肯定要消耗更多的存储空间。那到底需要消耗多少额外的存储空间呢?我们来分析一下跳表的空间复杂度。
这几级索引的结点总和就是n/2+n/4+n/8…+8+4+2=n-2。所以,跳表的空间复杂度是O(n)。也就是说,如果将包含n个结点的单链表构造成跳表,我们需要额外再用接近n个结点的存储空间。
我们前面都是每两个结点抽一个结点到上级索引,如果我们每三个结点或五个结点,抽一个结点到上级索引,是不是就不用那么多索引结点了呢?我画了一个每三个结点抽一个的示意图,你可以看下。
从图中可以看出,第一级索引需要大约n/3个结点,第二级索引需要大约n/9个结点。每往上一级,索引结点个数都除以3。为了方便计算,我们假设最高一级的索引结点个数是1。我们把每级索引的结点个数都写下来,也是一个等比数列。
通过等比数列求和公式,总的索引结点大约就是n/3+n/9+n/27+…+9+3+1=n/2。尽管空间复杂度还是O(n),但比上面的每两个结点抽一个结点的索引构建方法,要减少了一半的索引结点存储空间。
实际上,在软件开发中,原始链表中存储的有可能是很大的对象,而索引结点只需要存储关键值和几个指针,并不需要存储对象,所以当对象比索引结点大很多时,那索引占用的额外空间就可以忽略了。
跳表这个动态数据结构,不仅支持查找操作,还支持动态的插入、删除操作,而且插入、删除操作的时间复杂度也是O(logn)。
对于纯粹的单链表,需要遍历每个结点,来找到插入的位置。但是,对于跳表来说,我们讲过查找某个结点的的时间复杂度是O(logn),所以这里查找某个数据应该插入的位置,方法也是类似的,时间复杂度也是O(logn)。我画了一张图,你可以很清晰地看到插入的过程。
删除操作。
如果这个结点在索引中也有出现,我们除了要删除原始链表中的结点,还要删除索引中的。因为单链表中的删除操作需要拿到要删除结点的前驱结点,然后通过指针操作完成删除。所以在查找要删除的结点的时候,一定要获取前驱结点。当然,如果我们用的是双向链表,就不需要考虑这个问题了。
当我们不停地往跳表中插入数据时,如果我们不更新索引,就有可能出现某2个索引结点之间数据非常多的情况。极端情况下,跳表还会退化成单链表。
作为一种动态数据结构,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表中结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入、删除操作性能下降。
当我们往跳表中插入数据的时候,我们可以选择同时将这个数据插入到部分索引层中。如何选择加入哪些索引层呢?
我们通过一个随机函数,来决定将这个结点插入到哪几级索引中,比如随机函数生成了值K,那我们就将这个结点添加到第一级到第K级这K级索引中。
Redis中的有序集合是通过跳表来实现的,严格点讲,其实还用到了散列表。不过散列表我们后面才会讲到,所以我们现在暂且忽略这部分。如果你去查看Redis的开发手册,就会发现,Redis中的有序集合支持的核心操作主要有下面这几个:
插入一个数据;
删除一个数据;
查找一个数据;
按照区间查找数据(比如查找值在[100, 356]之间的数据);
迭代输出有序序列。
对于按照区间查找数据这个操作,跳表可以做到O(logn)的时间复杂度定位区间的起点,然后在原始链表中顺序往后遍历就可以了。这样做非常高效。