使用Spark Streaming处理Kafka数据流

Kafka作为优秀的日志采集系统,可以作为Spark Streaming的高级数据源,本文主要介绍如何使用Spark Streaming实时处理Kafka传递过来的数据流。

1 系统软件

本文实验基于的各软件版本如下:

  • Java 1.8.0_191
  • Scala 2.11
  • hadoop-3.0.3
  • zookeeper-3.4.10
  • Spark 2.3.2
  • kafka_2.12-2.0.1
  • kafka-manager-1.3.3.17

2 具体步骤

2.1 启动Kafka集群

启动Kafka集群之前首先启动Zookeeper集群:

  • 在安装有Zookeeper的机器上执行下述命令:
cd /usr/software/zookeeper/zookeeper-3.4.10/bin/
./zkServer.sh start
  • 另外打开一个终端,输入以下命令启动Kafka集群:
cd /usr/software/kafka/kafka_2.12-2.0.1/bin
./kafka-server-start.sh ../config/server.properties
  • 测试Kafka集群是否可以正常使用
cd /usr/software/kafka/kafka_2.12-2.0.1
./bin/kafka-topics.sh --create --zookeeper slave1:2181,slave2:2181,slave3:2181 --replication-factor 3 --partitions 3 --topic wordsender
//这个topic叫wordsender,2181是zookeeper默认的端口号,partition是topic里面的分区数,replication-factor是备份的数量
//可以用list列出所有创建的topics,来查看上面创建的topic是否存在
./bin/kafka-topics.sh --list --zookeeper slave1:2181,slave2:2181,slave3:2181

2.2 Kafka脚本测试数据的生成和消费

下面使用Kafka的producer脚本生成一些数据:

cd /usr/software/kafka/kafka_2.12-2.0.1/bin
./kafka-console-producer.sh --broker-list master:9092 --topic wordsender

执行上述命令后,即进入producer的console界面,输入一些数据:
Hello World
Hello Spark
Hello Kafka

另外打开一个终端使用Kafka的consumer脚本消费上述producer脚本生成的数据:

cd /usr/software/kafka/kafka_2.12-2.0.1/bin/
./kafka-console-consumer.sh --bootstrap-server master:9092  --topic wordsender --from-beginning

需要注意的是,在旧版本的kafka-console-consumer.sh中,是通过–zookeeper来消费数据的,而新版本的kafka则删除了该方法,统一使用–bootstrap-server,后面跟的是broker-list参数。

2.3 编写相应程序测试Kafka的数据生产及消费

本实验基于Maven作为项目构建工具,选择的IDE为IntelliJ IDEA 2018.1 ,采用的编程语言为Scala。

创建Maven工程后,项目处右键Add Frameworks Support:

使用Spark Streaming处理Kafka数据流_第1张图片

首先,我们来编写producer端的代码:

  • pom.xml


    4.0.0

    com.ruanshubin
    SparkAndKafka
    1.0-SNAPSHOT

    
        2.3.2
        2.11
    

    
        
            org.apache.spark
            spark-core_${scala.version}
            ${spark.version}
            provided
        
        
            org.apache.spark
            spark-streaming_${scala.version}
            ${spark.version}
            provided
        
        
            org.apache.spark
            spark-sql_${scala.version}
            ${spark.version}
            provided
        

        
            org.apache.spark
            spark-streaming-kafka-0-8_2.11
            2.3.2
        
    

    
        src/main/scala
        
            
                org.scala-tools
                maven-scala-plugin
                2.15.2
                
                    
                        
                            compile
                            testCompile
                        
                    
                
            
            
                org.apache.maven.plugins
                maven-shade-plugin
                3.1.0
                
                    
                        package
                        
                            shade
                        
                        
                            false
                            
                                
                                    *:*
                                    
                                        META-INF/*.SF
                                        META-INF/*.DSA
                                        META-INF/*.RSA
                                    
                                
                            
                            
                                
                                    com.ruanshubin.kafka.KafkaWordCount
                                
                            

                        
                    
                
            
        
      

必须使用spark-streaming-kafka-0-8_2.11,不能使用spark-streaming-kafka_2.11,因为该Jar打包的时候会遗漏org.apache.spark.Logging相关包。

spark-streaming-kafka-0-8_2.11的版本号一定与Scala和Spark版本严格对应,否则会报错。

  • KafkaWordProducer.scala
package com.ruanshubin.kafka

import java.util

import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}

object KafkaWordProducer {
  def main(args: Array[String]): Unit = {
    if(args.length < 4){
      System.err.println("Usage: KafkaWordCountProducer   +" +
        " ")
      System.exit(1)
    }

    val Array(brokers, topic, messagesPerSec, wordPerMessage) = args

    val props = new util.HashMap[String, Object]()
    props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
    props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")
    props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer")
    val producer = new KafkaProducer[String, String](props)

    while(true){
      (1 to messagesPerSec.toInt).foreach{
        messageNum => val str = (1 to wordPerMessage.toInt).map(x => scala.util.Random.nextInt(10)
          .toString).mkString(" ")
          print(str)
          println()
          val message = new ProducerRecord[String, String](topic, null, str)
          producer.send(message)
      }
      Thread.sleep(1000)
    }
  }
}

上述程序的作用就是每秒钟产生messagesPerSec条消息,每条消息包含wordPerMessage个单词(这里用10以内的随机整数代替单词)。

数据产生端producer有了,下面我们编写消费端consumer的代码:

  • KafkaWordCount

消费者主要将生产者传递过来的消息执行WordCount操作:

package com.ruanshubin.kafka

import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Minutes, Seconds, StreamingContext}

// spark-streaming-kafka-0-8_2.11的版本号一定要与Scala版本和Spark版本号对应起来
object KafkaWordCount {
  def main(args: Array[String]): Unit = {
    LoggerPro.setStreamingLogLevels()
    val sc = new SparkConf().setAppName("KafkaWordCount").setMaster("local[2]")
    val ssc = new StreamingContext(sc, Seconds(10))

    // 设置检查点
    ssc.checkpoint("/root/spark/checkpoint")
    // Zookeeper服务器地址
    val zkQuorum = "slave1:2181,slave2:2181,slave3:2181"
    // consumer所在的group,可在一个group中设置多个consumer,加快消息消费的速度
    val group = "handsome_boy"
    // topic的名称
    val topics = "wordsender"
    // 每个topic的分区数
    val numThreads = 3
    val topicMap = topics.split(",").map((_,numThreads.toInt)).toMap
    val lineMap = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap)
    val lines = lineMap.map(_._2)
    val words = lines.flatMap(_.split(" "))
    val pair = words.map(x => (x, 1))
    val wordCounts = pair.reduceByKeyAndWindow(_ + _, _ - _,Minutes(2), Seconds(10), 3)
    wordCounts.print
    ssc.start
    ssc.awaitTermination
  }
}

LoggerPro的目的是设置日志的打印级别,从而让结果输出的更为清晰,避免被大量的打印信息淹没。

package com.ruanshubin.kafka

import org.apache.log4j.{Level, Logger}
import org.apache.spark.internal.Logging

object LoggerPro extends Logging{

  def setStreamingLogLevels(): Unit ={
    val log4jInitialized = Logger.getRootLogger.getAllAppenders.hasMoreElements
    if(!log4jInitialized){
      logInfo("Setting log level to [ERROR] for streaming example." +
        " To override add a custom log4j.properties to the classPath")
      Logger.getRootLogger.setLevel(Level.ERROR)
    }
  }

}

最终的项目结构如下图所示:

使用Spark Streaming处理Kafka数据流_第2张图片

2.4 打包、提交集群运行

  • Maven打包

使用Spark Streaming处理Kafka数据流_第3张图片

  • 提交服务器

将项目target目录下生成的可执行Jar包上传到服务器指定目录,这里我上传到/usr/software/spark/mycode/streaming。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OiMHvr5p-1573719138831)(https://upload-images.jianshu.io/upload_images/10431632-3e1b266e385ad1b3.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)]

使用Spark Streaming处理Kafka数据流_第4张图片

  • 启动Kafka Manager

为了直观观察到数据流的流转,我们启动Kafka Manager:

cd /usr/software/kafka/kafka-manager-1.3.3.17/bin
./kafka-manager -Dhttp.port=9002

使用Spark Streaming处理Kafka数据流_第5张图片

  • 运行

首先启动Producer端:

cd /usr/software/spark/spark-2.3.2-bin-hadoop2.7/bin/
./spark-submit --class "com.ruanshubin.kafka.KafkaWordProducer" /usr/software/spark/mycode/streaming/SparkAndKafka-1.0-SNAPSHOT.jar slave1:9092,slave2:9092,slave3:9092 wordsender 3 5

使用Spark Streaming处理Kafka数据流_第6张图片

新打开一个终端,启动消费者:

cd /usr/software/spark/spark-2.3.2-bin-hadoop2.7/bin/
./spark-submit --class "com.ruanshubin.kafka.KafkaWordCount" /usr/software/spark/mycode/streaming/SparkAndKafka-1.0-SNAPSHOT.jar

使用Spark Streaming处理Kafka数据流_第7张图片

可以看到,Spark Streaming在实时消费Kafka里传过来的数据。

同时,查看Kafka Manger也可以看到数据在实时得产生和消费。

使用Spark Streaming处理Kafka数据流_第8张图片

你可能感兴趣的:(大数据,spark,kafka,linq)