最近在使用TinyImageNet数据集做分类任务,网络上对这个数据集的使用不算多,故做一些记录。
借鉴github,读取数据集
https://github.com/Manikvsin/TinyImagenet-pytorch/blob/master/tiny_image_net_torch.py
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import models,utils,datasets,transforms
import numpy as np
import sys
import os
from PIL import Image
import numpy as np
class TinyImageNet(Dataset):
def __init__(self, root, train=True, transform = None):
self.Train = train
self.root_dir = root
self.transform = transform
self.train_dir = os.path.join(self.root_dir, "train")
self.val_dir = os.path.join(self.root_dir, "val")
if (self.Train):
self._create_class_idx_dict_train()
else:
self._create_class_idx_dict_val()
self._make_dataset(self.Train)
words_file = os.path.join(self.root_dir, "words.txt")
wnids_file = os.path.join(self.root_dir, "wnids.txt")
self.set_nids = set()
with open(wnids_file, 'r') as fo:
data = fo.readlines()
for entry in data:
self.set_nids.add(entry.strip("\n"))
self.class_to_label = {}
with open(words_file, 'r') as fo:
data = fo.readlines()
for entry in data:
words = entry.split("\t")
if words[0] in self.set_nids:
self.class_to_label[words[0]] = (words[1].strip("\n").split(","))[0]
def _create_class_idx_dict_train(self):
if sys.version_info >= (3,5):
classes = [d.name for d in os.scandir(self.train_dir) if d.is_dir()]
else:
classes = [d for d in os.listdir(self.train_dir) if os.path.isdir(os.path.join(train_dir,d))]
classes = sorted(classes)
num_images = 0
for root, dirs, files in os.walk(self.train_dir):
for f in files:
if f.endswith(".JPEG"):
num_images = num_images + 1
self.len_dataset = num_images;
self.tgt_idx_to_class = {i:classes[i] for i in range(len(classes))}
self.class_to_tgt_idx = {classes[i]:i for i in range(len(classes))}
def _create_class_idx_dict_val(self):
val_image_dir = os.path.join(self.val_dir, "images")
if sys.version_info >= (3,5):
images = [d.name for d in os.scandir(val_image_dir) if d.is_file()]
else:
images = [d for d in os.listdir(val_image_dir) if os.path.isfile(os.path.join(train_dir,d))]
val_annotations_file = os.path.join(self.val_dir, "val_annotations.txt")
self.val_img_to_class = {}
set_of_classes = set()
with open(val_annotations_file,'r') as fo:
entry = fo.readlines()
for data in entry:
words = data.split("\t")
self.val_img_to_class[words[0]] = words[1]
set_of_classes.add(words[1])
self.len_dataset = len(list(self.val_img_to_class.keys()))
classes = sorted(list(set_of_classes))
#self.idx_to_class = {i:self.val_img_to_class[images[i]] for i in range(len(images))}
self.class_to_tgt_idx = {classes[i]:i for i in range(len(classes))}
self.tgt_idx_to_class = {i:classes[i] for i in range(len(classes))}
def _make_dataset(self, Train=True):
self.images = []
if Train:
img_root_dir = self.train_dir
list_of_dirs = [target for target in self.class_to_tgt_idx.keys()]
else:
img_root_dir = self.val_dir
list_of_dirs = ["images"]
for tgt in list_of_dirs:
dirs = os.path.join(img_root_dir, tgt)
if not os.path.isdir(dirs):
continue
for root,_,files in sorted(os.walk(dirs)):
for fname in sorted(files):
if (fname.endswith(".JPEG")):
path = os.path.join(root, fname)
if Train:
item = (path, self.class_to_tgt_idx[tgt])
else:
item = (path, self.class_to_tgt_idx[self.val_img_to_class[fname]])
self.images.append(item)
def return_label(self, idx):
return [self.class_to_label[self.tgt_idx_to_class[i.item()]] for i in idx]
def __len__(self):
return self.len_dataset
def __getitem__(self, idx):
img_path, tgt = self.images[idx]
with open(img_path,'rb') as f:
sample = Image.open(img_path)
sample = sample.convert('RGB')
if self.transform is not None:
sample = self.transform(sample)
return sample, tgt
我想把数据集合成一个文件,存储成npy格式
训练集10万张图片,转化成npy文件,大小约为9.2G
本来最开始一重循环读取,结果时间越来越长,到1万张左右时,因为数组一直在内存中,拼接操作花费的时间直线上升。
所以权衡之下,500张图片做一次拼接。
import time
if __name__ == "__main__":
#transform = transforms.Compose([transforms.ToTensor()])
start = time.time()
transform = None
tynet = TinyImageNet(root='../dataset/tiny-imagenet-200',transform=transform)
for j in range(200):
dst = np.zeros((1,64,64,3))
tar = np.random.rand(1)
for i in range(500):
dat, target = tynet.__getitem__(i + j * 500)
dat = np.array(dat)[None,:,:,:]
dst = np.concatenate((dst,dat))
tar = np.concatenate((tar,[target]))
if (i+1) % 500 == 0:
print(i)
end = time.time()
print(end-start)
#pdb.set_trace()
#print(tar)
if j > 0:
tmp_dat = np.load("data.npy")
tmp_tar = np.load("target.npy")
tmp_dat = np.concatenate((tmp_dat,dst[1:]))
tmp_tar = np.concatenate((tmp_tar,tar[1:]))
np.save("data.npy",tmp_dat)
np.save("target.npy",tmp_tar)
new_dst = np.load("data.npy")
else:
np.save("data.npy",np.array(dst[1:]))
np.save("target.npy",np.array(tar[1:]))
new_dst = np.load("data.npy")
print(new_dst.shape)
print("loaded.")
def getStat(data_loader):
'''
Compute mean and std for training data
:return: (mean, std)
'''
print('Compute mean and std for training data.')
print(len(data_loader))
mean = torch.zeros(3)
std = torch.zeros(3)
for train_data,_ in data_loader:
for d in range(3):
mean[d] += train_data[:,d, :, :].mean()
std[d] += train_data[:,d, :, :].std()
mean = mean / len(data_loader)
std = std / len(data_loader)
return list(mean.numpy()), list(std.numpy())
if __name__ == "__main__":
transform = transforms.Compose([transforms.ToTensor()])
#transform = None
tynet = TinyImageNet(root='../dataset/tiny-imagenet-200',transform=transform)
loader = DataLoader(tynet,batch_size = 100)
print(getStat(loader))
最后结果,均值和标准差
batch = 100
([0.48024505, 0.4480726, 0.39754787], [0.2717199, 0.26526922, 0.27396977])
batch = 200
([0.48024592, 0.4480722, 0.39754784], [0.27227214, 0.26570824, 0.27469844])
batch = 250
([0.4802457, 0.44807217, 0.3975479], [0.27193516, 0.26546907, 0.27422717])
batch = 500
([0.48024562, 0.4480722, 0.3975478], [0.27201378, 0.26554194, 0.27431726])
如有错误,欢迎指正。