有效的完全平方数
最朴素的解法是用库函数。
class Solution:
def isPerfectSquare(self, num: int) -> bool:
# 库函数
return float.is_integer(pow(num, 0.5))
class Solution {
public boolean isPerfectSquare(int num) {
// 库函数
int x = (int) Math.sqrt(num);
return x * x == num;
}
}
假定num为有效的完全平方数,则一定存在正整数x使得xx=num。于是可以从1开始遍历正整数,寻找是否存在满足xx=num的正整数x。在遍历过程中,如果存在正整数x使得xx>num,则不可能再出现正整数x使得xx=num成立,不再继续遍历。
class Solution:
def isPerfectSquare(self, num: int) -> bool:
# 暴力遍历
x, square = 1, 1
while square <= num:
if square == num:
return True
x += 1
square = x * x
return False
class Solution {
public boolean isPerfectSquare(int num) {
// 暴力遍历
long x = 1, square = 1;
while (square <= num) {
if (square == num) {
return true;
}
++x;
square = x * x;
}
return false;
}
}
可以使用二分查找对暴力遍历进行优化,由于num是正整数,所以如果正整数x满足x*x=num,则x一定满足1 <= x <= num。所以可以使用1和num作为两个边界。
class Solution:
def isPerfectSquare(self, num: int) -> bool:
# 二分查找
left, right = 0, num
while left <= right:
mid = (left + right) // 2
square = mid * mid
if square < num:
left = mid + 1
elif square > num:
right = mid - 1
else:
return True
return False
class Solution {
public boolean isPerfectSquare(int num) {
// 二分查找
int left = 0, right = num;
while (left <= right) {
int mid = (right - left) / 2 + left;
long square = (long) mid * mid;
if (square < num) {
left = mid + 1;
} else if (square > num) {
right = mid - 1;
} else {
return true;
}
}
return false;
}
}