- 《李航 统计学习方法》学习笔记——第八章提升方法
eveiiii
统计学习python机器学习人工智能算法
提升方法8.1提升方法AdaBoost8.1.1提升方法的基本思路8.1.2AdaBoost算法8.1.3AdaBoost的例子(代码实现)8.2AdaBoost算法的训练误差分析定理8.1AdaBoost训练误差界定理8.2二分类问题AdaBoost训练误差界8.3AdaBoost算法的解释8.3.1前向分步算法8.3.2前向分步算法与AdaBoost8.4提升树8.4.1提升树模型8.4.2提
- LM_Funny-2-01 递推算法:从数学基础到跨学科应用
王旭·wangxu_a
算法
目录第一章递推算法的数学本质1.1形式化定义与公理化体系定理1.1(完备性条件)1.2高阶递推的特征分析案例:Gauss同余递推4第二章工程实现优化技术2.1内存压缩的革新方法滚动窗口策略分块存储技术2.2异构计算加速方案GPU并行递推量子计算原型第三章跨学科应用案例3.1密码学中的递推构造混沌流密码系统3.2生物信息学的序列分析DNA甲基化预测第一章递推算法的数学本质1.1形式化定义与公理化体系
- DeepSeek 智慧城市应用:交通流量预测(918)
web13508588635
面试学习路线阿里巴巴智慧城市人工智能
**摘要:**本文探讨了利用DeepSeek技术框架解决城市交通流量预测问题的方法,主要内容包括基于时空图卷积网络(ST-GCN)的预测模型、多传感器数据融合策略以及实时推理API服务的搭建,旨在为智慧城市的交通管理提供高效、准确的解决方案。**引言:**随着城市化进程的加速,交通拥堵成为城市发展的顽疾。准确的交通流量预测对于优化交通管理、提升出行效率至关重要。DeepSeek作为先进的技术框架,
- 《数字围城与看不见的手:网络安全的经济哲学简史》
安全
(楔子:从青铜铸币到数据流)公元前7世纪,吕底亚人将琥珀金铸成硬币,货币流动催生了人类的安全难题——如何防止赝品渗透经济血脉。2023年,某跨国电商平台因API接口漏洞,每秒有317个虚拟账户在暗网交易数字资产。这组跨越时空的数据揭示永恒定律:财富形态决定安全范式,防护技术永远比攻击手段晚进化0.618个黄金分割周期。一、数据资本论:生产要素的惊险跳跃当亚当·斯密凝视别针工厂时,他看到的劳动分工正
- 极限的定义与求解(微积分前置知识)
Jean·Gunnhildr
Jean带飞你的文化课数学建模高考笔记
文章目录说明第3章极限导论3.1~43.5关于渐近线的两个常见误解3.6三明治定理第4章求解多项式的极限问题4.1x→ax\toax→a时的有理函数的极限4.2x→ax\toax→a时的平方根的极限4.3x→+∞x\to+\inftyx→+∞时的有理函数的极限4.4x→+∞x\to+\inftyx→+∞时多项式型(无理)函数的极限4.5x→−∞x\to-\inftyx→−∞时的有理函数的极限4.6
- DeepSeek基础之机器学习
珠峰日记
机器学习ai人工智能
文章目录一、核心概念总结(一)机器学习基本定义(二)基本术语(三)假设空间(四)归纳偏好(五)“没有免费的午餐”定理(NFL定理)二、重点理解与思考(一)泛化能力的重要性(二)归纳偏好的影响(三)NFL定理的启示三、应用场景联想(一)电商推荐系统(二)医疗诊断四、机器学习的基本流程(一)问题定义(二)数据收集与预处理(三)模型选择与训练(四)模型评估与优化(五)模型部署与应用五、机器学习的挑战(一
- 【数论 二分查找】P7588 双重素数(2021 CoE-II A)|普及
闻缺陷则喜何志丹
#洛谷普及算法c++洛谷数学二分查找数论位和
本文涉及的基础知识点C++二分查找数论:质数、最大公约数、菲蜀定理双重素数(2021CoE-IIA)题目描述素数(质数)是指在大于111的自然数中,除了111和它本身以外不再有其他因数的自然数。定义双重素数为这样的素数:它的各位数字之和也是一个素数。给定一个闭区间,试确定在该区间内双重素数的个数。输入格式输入包含多组测试数据。输入第一行包含一个整数TTT,表示测试数据的组数。接下来每行一组测试数据
- 统计学基础知识点刷题(task2)
sm376624607
统计学
参考视频:可汗学院《统计学》参考书籍:《深入浅出统计学》文章目录概念1:中心极限定理概念2:置信区间概念3:伯努利分布概念4:误差范围概念5:小样本容量置信区间概念1:中心极限定理核心内容:随着抽样次数趋于∞\infty∞,样本均值的抽样分布趋近于正态分布,且该正态分布的均值为总体均值。X‾服从N(μ,σ/n)\overline{X}服从N(\mu,\sigma/\sqrt{n})X服从N(μ,σ
- 【2024】LeetCode HOT 100——贪心算法
「已注销」
leetcode贪心算法算法
目录1.买卖股票的最佳时机1.1C++实现1.2Python实现1.3时空分析2.跳跃游戏2.1C++实现2.2Python实现2.3时空分析3.跳跃游戏II3.1C++实现3.2Python实现3.3时空分析4.划分字母区间4.1C++实现4.2Python实现4.3时空分析1.买卖股票的最佳时机原题链接:121.买卖股票的最佳时机实际上就是计算maxj<i(ai
- 运筹说 第130期 | 对策论引言
运筹说
运筹学
通过对对策论基础知识进行梳理和总结,小编绘制了《对策论思维导图》,如下图所示,对策论章节一共包含4个小节。第1小节是对策论引言。介绍了对策论的基本概念,包含对策行为和对策论、对策现象的三要素、对策问题举例及对策的分类。第2小节是矩阵对策的基本理论。介绍了矩阵对策的纯策略、矩阵对策的混合策略和矩阵对策的基本定理。第3小节是矩阵对策的解法。分别介绍了图解法、方程组法和线性规划法3种矩阵对策的求解方法。
- Spring MVC 与 Spring Boot:从“手动挡”到“自动驾驶”的进化论,兼谈前后端分离的哲学
月落星还在
springBootspringmvcspringboot云原生
引言:当“造轮子”成为一门艺术在Java开发者的世界里,Spring框架就像空气一样无处不在。但你是否想过:为什么我们需要SpringBoot?为什么在“前后端分离”大行其道的今天,SpringMVC依然活跃在舞台上?这背后不仅是技术的迭代,更是一场关于开发效率与架构哲学的深刻博弈。让我们抛开教科书式的定义,用一场“时空穿越”的视角,重新审视这两个框架的恩怨情仇。第一章SpringMVC:那个“手
- JDK活化石复苏:showDocument()抢救指南,一秒变身技术大佬!保姆级教程来啦!
筱涵哥
Javajava开发语言
一、时空错乱现场:当我试图用Applet打开2024年的网页1.1来自前朝的圣旨"把这个2008年的报表系统迁移到新浏览器!"——当我听到这个需求时,显示器里的IE6图标流下了两行像素泪。1.2现代程序员的降维打击//试图在现代浏览器召唤神龙时try{URLurl=newURL("http://modern.com");getAppletContext().showDocument(url);//
- 线性代数导引:实系数和复系数不可约多项式
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
线性代数导引:实系数和复系数不可约多项式关键词:线性代数、实系数多项式、复系数多项式、不可约多项式、代数学基本定理、伽罗瓦理论1.背景介绍1.1问题的由来多项式是数学中一个基础而重要的概念,它不仅在代数学中有着广泛的应用,在几何、物理等领域也有着重要的地位。而研究多项式的可约性,尤其是实系数和复系数多项式的不可约性,对于理解多项式的本质特征具有重要意义。1.2研究现状目前对于实系数和复系数多项式的
- 线代[8]|北大丘维声教授《怎样学习线性代数?》(红色字体为博主注释)
汉密士20240101
线性代数【精品】丘维声学习线性代数高等代数
文章目录说明一、线性代数的内容简介二、学习线性代数的用处三、线性代数的特点四、学习线性代数的方法五、更新时间记录说明文章中红色字体为博主敲录完丘教授这篇文章后所加,刷到这篇文章的读者在首次阅读应当跳过红色字体,先通读一读文章全文,一遍,两遍,甚至是三遍以上。该篇文章为大学工科专业线性代数课程脉络的梳理性质文章,仅仅到“二次型”为止与考研大纲相同,并未涉及“哈密顿—凯莱定理、奇异值分解(SVD)、广
- 【多模态处理篇二】【深度揭秘:DeepSeek视频理解之时空注意力机制解析】
再见孙悟空_
「2025DeepSeek技术全景实战」音视频自动化DeepSeekDeepSeekR1人工智能机器学习视频理解
一、为啥要搞视频理解这事儿咱先唠唠为啥视频理解这么重要哈。现在这互联网时代,视频那可是铺天盖地的。你刷短视频平台,看在线电影,玩游戏直播,到处都是视频。但是计算机它一开始可不懂视频里到底是啥意思,它看到的就是一堆像素点和声音信号。视频理解呢,就是要让计算机像人一样,能看懂视频里的内容。比如说,知道视频里是谁在干啥,发生了啥事儿,啥时候发生的。这在很多领域都特别有用,像安防监控,能自动识别视频里的异
- 设计一个高并发的系统,如何保证数据一致性?
weixin_49526058
面试后端高并发
设计高并发系统时,保证数据一致性是一个非常重要的挑战,尤其是在分布式环境中。以下是一些常见的策略和方法来保证数据一致性:1.CAP定理CAP定理表明,在一个分布式系统中,不能同时满足以下三个要求:Consistency(数据一致性):所有节点在同一时间看到相同的数据。Availability(可用性):每个请求都会得到响应,无论请求是否成功。PartitionTolerance(分区容忍性):即使
- 朴素贝叶斯原理及sklearn中代码实战
Lewis@
sklearn概率论机器学习
朴素贝叶斯(NaiveBayes)是一类基于贝叶斯定理的简单而有效的分类算法。它假设特征之间是相互独立的,即在给定目标变量的情况下,每个特征都不依赖于其他特征。尽管这个假设在实际中很难成立,朴素贝叶斯在许多场景下仍表现得非常好,特别是对于文本分类等高维数据的应用。1.贝叶斯定理贝叶斯定理表明给定一个事件发生的条件下另一个事件发生的概率:P(A∣B)=P(B∣A)⋅P(A)P(B){P(A|B)=\
- DeepSeek赋能智能交通流量预测与优化:告别拥堵的未来
人工智能专属驿站
计算机视觉人工智能
DeepSeek赋能智能交通流量预测与优化:告别拥堵的未来在城市化快速发展的今天,交通拥堵已成为全球大中城市的“通病”,严重影响人们的出行效率和生活质量。然而,随着人工智能技术的不断进步,特别是DeepSeek这样的先进模型的出现,交通流量预测与优化迎来了新的曙光。DeepSeek凭借其强大的时空预测模型和强化学习框架,为交通流量预测和信号优化提供了全新的解决方案。它能够整合多源数据,包括地磁传感
- 2020腾讯后端面试题以及解答(golang方向)
橙狮科技
面试golang后端
1、goalng相关Q:context作用,原理,超时控制A:golangcontext的理解,context主要用于父子任务之间的同步取消信号,本质上是一种协程调度的方式。另外在使用context时有两点值得注意:上游任务仅仅使用context通知下游任务不再需要,但不会直接干涉和中断下游任务的执行,由下游任务自行决定后续的处理操作,也就是说context的取消操作是无侵入的;context是线
- 解密上门按摩系统:高并发场景下如何保障服务稳定?
龙兵科技软件开发小江
微信小程序生活健康医疗按摩服务
在当今快节奏的生活中,上门按摩服务正逐渐崭露头角,成为备受欢迎的健康休闲选择。这一服务借助线上平台,打破了传统按摩店的时空限制,让人们在舒适的家中就能享受到专业的按摩服务。上门按摩服务的便捷性不言而喻。只需轻点手机,用户便能在众多按摩项目中自由挑选,无论是肩颈放松,还是全身SPA,都能轻松实现。同时,用户还拥有挑选技师的权利,通过查看技师的照片和小视频,选择自己心仪的服务人员。这种个性化的选择,极
- 【matlab】采用傅立叶变换空间载波法从强度分布恢复相位分布
鱼弦
人工智能时代matlab开发语言
采用傅立叶变换空间载波法从强度分布恢复相位分布介绍傅立叶变换空间载波法是一种从强度分布恢复相位分布的技术,广泛应用于光学测量、干涉测量、表面形貌测量等领域。该方法通过分析空间上呈正弦分布的光强信息,利用傅立叶变换提取相位信息,从而恢复波面的相位分布。应用使用场景光学测量:用于测量光学元件的表面形貌和波前误差。干涉测量:用于干涉仪中的相位恢复和表面形貌测量。生物医学成像:用于相位对比显微镜中的相位恢
- Llama都在用的RoPE有了视频版,长视频理解/检索绝佳拍档
量子位
VideoRoPE团队投稿量子位|公众号QbitAILlama都在用的RoPE(旋转位置嵌入)被扩展到视频领域,长视频理解和检索更强了。复旦大学、上海AI实验室等提出VideoRoPE,并确定了将RoPE有效应用于视频所需的四个关键特性。在长视频检索、视频理解和视频幻觉等各种下游任务中,VideoRoPE始终优于先前的RoPE变体。用三维结构保留时空关系RoPE是一种能够将相对位置信息依赖集成到s
- 分布式数据库解析
qcidyu
文章归档数据分片高可用架构云数据库共识算法全球一致性分布式事务CAP定理
title:分布式数据库解析date:2025/2/20updated:2025/2/20author:cmdragonexcerpt:通过金融交易、社交平台、物联网等9大真实场景,结合GoogleSpanner跨洲事务、DynamoDB毫秒级扩展等38个生产级案例,揭示分布式数据库的核心原理与工程实践。内容涵盖CAP定理的动态权衡策略、Paxos/Raft协议的工程实现差异、TrueTime时钟
- 分布式理论与分布式算法
红衣女妖仙
springcloud分布式分布式定理分布式算法
分布式定义、主要目标、优缺点、与集中式区别;分布式CAP定理、PACELC理论、BASE理论的核心观点、应用场景等;分布式算法如Paxos算法、Raft算法、Gossip算法、两阶段提交(2PC)、三阶段提交(3PC)、一致性哈希算法、Bully算法、Chord算法等算法的核心思想、角色、算法过程、特性、应用场景和变种等。——2025年2月3日甲辰年正月初六立春目录1分布式1.1分布式定义1.
- 【JAVA工程师从0开始学AI】,第五步:Python类的“七十二变“——当Java的铠甲遇见Python的液态金属
架构默片
JAVA工程师从0开始学AIpythonjava开发语言
副标题:从继承大战到猴子补丁,看动态类型如何颠覆面向对象认知当Java工程师还在为implements和extends绞尽脑汁时,Python的类已化身"终结者T-1000",在代码世界肆意变形。这里没有private的保险箱,super()能穿越多重继承时空,甚至能在运行时给类"整容换脑"。本文将用五个震撼场景,带你体验Python面向对象编程的"量子纠缠"——原来类的__init__只是开始,
- 四元数:连接四维时空与三维旋转的数学桥梁
aichitang2024
算法数学知识点讲解四元数线性代数
四元数:连接四维时空与三维旋转的数学桥梁引言1843年,威廉·哈密顿在都柏林布鲁姆桥的顿悟,不仅诞生了四元数理论,更开创了高维数在三维空间应用的新纪元。本文将揭示四元数如何架起四维数学空间与三维物理世界的桥梁。一、四元数基础架构1.代数定义四元数是形如的超复数:q=w+xi+yj+zk其中:w为实部(Scalar)(x,y,z)为虚部(Vector)i²=j²=k²=ijk=-12.基本运算规则运
- c语言正整数幂尾数循环问题(同余定理)
ᴅᴜᴅ
算法
众所周知,2的正整数次幂最后一位数总是不断的在重复2,4,8,6,2,4,8,6…2,4,8,6,2,4,8,6…我们说2的正整数次幂最后一位的循环长度是4(实际上4的倍数都可以说是循环长度,但我们只考虑最小的循环长度)这时乐乐的问题就出来了:是不是只有最后一位才有这样的循环呢?对于一个整数n的正整数次幂来说,它的后L(L=1,2)位是否会发生循环?如果循环的话,循环长度是多少呢?注意:如果n的某
- 【2023】LeetCode HOT 100——哈希
「已注销」
leetcode算法数据结构
目录1.两数之和1.1C++实现1.2Python实现1.3时空分析2.字母异位词分组2.1C++实现2.2Python实现2.3时空分析3.最长连续序列3.1C++实现3.2Python实现3.3时空分析1.两数之和原题链接:1.两数之和不妨设i<ji<ji<
- matlab中功率因数怎样测量,如何测量功率因数?功率因数测量方法
liubotian1995
matlab中功率因数怎样测量
功率因数测量方法有:1、功率因数表法直接测量。用功率因数表直接测即可。这样测量到的瞬时功率因数值。2、功率法测量:测量负载的有功功率和无功功率(也有测视在功率的),在用勾股定理或三角函数计算出功率因数,这是依据功率因数的定义得出的测量方法。数据也是瞬时功率因数值。3、电量法测量:供电局使用的方法,抄录当期用电的有功电量和无功电量数据,用三角函数计算出功率因数值。这是当期的平均功率因数值。我们都知道
- C++内存操纵的十二维解构艺术
王强你强
编程技术c++java开发语言
在C++的混沌宇宙中,指针是打开时空裂缝的密钥。本文将以全新视角解构指针的本质,揭示从堆栈穿梭到多维空间映射的进阶技法,展示现代C++赋予指针的惊人可能性。一、指针本体论:内存的波粒二象性所有指针变量都是量子化的存在,既指向具体内存位置,又携带类型信息波。通过类型系统实验可验证其双重属性:templatevoidquantum_observer(T*ptr){std::cout(ptr)(&c)v
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa