作者 SAURAV KAUSHIK
译者 钱亦欣
引言
网上的数据和信息无穷无尽,如今人人都用百度谷歌来作为获取知识,了解新鲜事物的首要信息源。所有的这些网上的信息都是直接可得的,而为了满足日益增长的数据需求,我坚信网络数据爬取已经是每个数据科学家的必备技能了。在本文的帮助下,你将会突破网络爬虫的技术壁垒,实现从不会到会。
大部分网上呈现的信息都是以非结构化的格式存储(html)且不提供直接的下载链接,因此,我们需要学习一些知识和经验来获取这些数据。
本文我将带你领略利用R做网络数据采集的全过程,通读文章后你将掌握如何来使用因特网上各位数据的技能。
目录
什么是网络数据爬取
为什么需要爬取数据
数据爬取方法
前提条件
使用R爬取网页
分析从网页爬取的数据
1. 什么是网络数据爬取
网络爬虫是讲呈现在网页上以非结构格式(html)存储的数据转化为结构化数据的技术,该技术非常简单易用。
几乎所有的主流编程语言都提供了网络数据爬取的实现方式,本文我们会用R来爬取IMDB上2016年最热门电影的一些特征。
我们将采集2016年度最热门电影的若干特征,同时我们也会遇到网页代码不一致的问题并将其解决。这是在做网络爬虫时最常遇到的问题之一。
如果你更喜欢用python变成,我建议你看这篇指南来学习如何用python做爬虫。
2. 为什么需要爬取数据
我确信你现在肯定在问“为什么需要爬取数据”,正如前文所述,爬取网页数据极有可能。(译者注:原文如此,我没看懂这个设问的逻辑)
为了提供一些使用的知识,我们将会爬取IMDB的数据,同时,利用爬虫你还可以:
爬取电影评分来构建推荐系统
爬取维基百科等信源的文本作为训练预料来构建深度学习模型以实现主体识别等功能
爬取有标签的图像(从Google,Flickr等网站)来训练图像分类模型
爬取社交媒体数据(Facebook 和 Twitter 等)做情感分析,观点挖掘等
爬取电商的用户评论和反馈(从Amazon,Flipkart等)
3. 数据爬取方法
网络数据抓取的方式有很多,常用的有:
人工复制粘贴:这是采集数据的缓慢但有效的方式,相关的工作人员会自行分析并把数据复制到本地。
文本模式匹配:另一种简单有效的方法是利用编程语言中的正则表达式来匹配固定模式的文本,在这里你可以学到关于正则表达式的更多内容。
使用API:诸如Facebook,Twitter和Linkedin一类的许多网站都提供了公共或者私人的API,它们提供了标准化的代码供用户请求规定格式的数据。
DOM解析:程序可以使用浏览器来获取客户端脚本生成的动态内容。基于这些程序可以获得的页面来使用DOM树来解析网页也是可行的办法,
我们会使用DOM解析的方式来获取数据,并基于网页的CSS选择器来寻找含有所需信息的网页部分。但在开始之前,我们必须满足一些前提条件。
4. 前提条件
利用R实现网络爬虫的前提条件有两大块:
要写R语言爬虫,你对R必须有一定了解。如果你还是个新手,我强烈建议参照这个学习路径 来学习。本文将使用“Hadley Wickham(Hadley我爱你!!!)”开发的“rvest”包来实现爬虫。你可以从这里获得这个包的文档。如果你没有安装这个包,请执行以下代码。
install.packages('rvest')
除此之外,HTML,CSS的相关知识也很重要。学习他们的有一个很好的资源。我见识过不少对HTML和CSS缺乏了解的数据科学家,因此我们将使用名为Selector Gadget的开源软件来更高效地实现抓取。你可以在这里下载这个工具包。请确保你的浏览器已经安装了这个插件(推荐用chrome浏览器),并且能正常使用。(译者注:chrome中的css viewer 和 xpath helper 也是神器。)
使用这个插件你可以通过点击任一网页中你需要的数据就能获得相应的标签。你也可以学习HTML和CSS的知识并且手动实现这一过程。而且,为了更深入地了解网络爬取这一艺术,我很推荐你学习下HTML和CSS来了解其背后的机理。
5. 使用R爬取网页
现在让我们开始爬取IMDB上2016年度最流行的100部故事片,你可以在这里查看相关信息。
# 加载包
library('rvest')
# 指定要爬取的url
url <- 'http://www.imdb.com/search/title?
count=100&release_date=2016,2016&title_type=feature'
# 从网页读取html代码
webpage <- read_html(url)
现在,让我们爬取网页上的这些数据:
Rank:从1到100,代表排名
Title:故事片的标题
Description:电影内容简介
Runtime: 电影时长
Genre: 电影类型
Rating: IMDB提供的评级
Metascore: IMDB上该电影的评分
Votes: 电影的好评度
Gross_Earning_in_Mil: 电影总票房(百万)
Director: 影片的总导演,如果有多位,取第一个
Actor: 影片的主演,如果有多位,取第一个
这是页面的截图
Step 1: 爬取的第一步是使用 selector gadget获得排名的CSS选择器。你可以点击浏览器中的插件图标并用光标点击排名的区域。
要确保所有的排名都被选择了,你也可以再次点击选中区域来取消选择,最终只有高亮的那些部分会被爬取。
Step 2: 一旦你已经选择了正确的区域,你需要把在底部中心显示的相应的CSS选择器复制下来。
Step 3: 只要CSS选择器包含排名,你就能用几行简单的代码来获取所有的排名了:
# 用CSS选择器获取排名部分
rank_data_html <- html_nodes(webpage,'.text-primary')
# 把排名转换为文本
rank_data <- html_text(rank_data_html)
# 检查一下数据
head(rank_data)
[1] "1." "2." "3." "4." "5." "6."
Step 4: 获取数据之后,请确保他们被你所需的格式存储,我会把排名处理成数值型。
# 数据预处理:把排名转换为数值型
rank_data<-as.numeric(rank_data)
# 再检查一遍
head(rank_data)
[1] 1 2 3 4 5 6
Step 5: 现在你可以清空选择部分并开始选择电影标题了,你可以看见所有的标题都被选择了,你依据个人需要做一些增删。
Step 6: 正如从前,再次复制CSS选择器并用下列代码爬取标题。
# 爬取标题
title_data_html <- html_nodes(webpage,'.lister-item-header a')
# 转换为文本
title_data <- html_text(title_data_html)
# 检查一下
head(title_data)
[1] "Sing" "Moana" "Moonlight" "Hacksaw Ridge"
[5] "Passengers" "Trolls"
Step 7: 下列代码会爬取剩余的数据– Description, Runtime, Genre, Rating, Metascore, Votes, Gross_Earning_in_Mil , Director and Actor data.
# 爬取描述
description_data_html <- html_nodes(webpage,'.ratings-bar+ .text-muted')
# 转为文本
description_data <- html_text(description_data_html)
# 检查一下
head(description_data)
[1] "\nIn a city of humanoid animals, a hustling theater impresario's attempt to save his theater with a singing competition becomes grander than he anticipates even as its finalists' find that their lives will never be the same."
[2] "\nIn Ancient Polynesia, when a terrible curse incurred by the Demigod Maui reaches an impetuous Chieftain's daughter's island, she answers the Ocean's call to seek out the Demigod to set things right."
[3] "\nA chronicle of the childhood, adolescence and burgeoning adulthood of a young, African-American, gay man growing up in a rough neighborhood of Miami."
[4] "\nWWII American Army Medic Desmond T. Doss, who served during the Battle of Okinawa, refuses to kill people, and becomes the first man in American history to receive the Medal of Honor without firing a shot."
[5] "\nA spacecraft traveling to a distant colony planet and transporting thousands of people has a malfunction in its sleep chambers. As a result, two passengers are awakened 90 years early."
[6] "\nAfter the Bergens invade Troll Village, Poppy, the happiest Troll ever born, and the curmudgeonly Branch set off on a journey to rescue her friends.
# 移除 '\n'
description_data<-gsub("\n","",description_data)
# 再检查一下
head(description_data)
[1] "In a city of humanoid animals, a hustling theater impresario's attempt to save his theater with a singing competition becomes grander than he anticipates even as its finalists' find that their lives will never be the same."
[2] "In Ancient Polynesia, when a terrible curse incurred by the Demigod Maui reaches an impetuous Chieftain's daughter's island, she answers the Ocean's call to seek out the Demigod to set things right."
[3] "A chronicle of the childhood, adolescence and burgeoning adulthood of a young, African-American, gay man growing up in a rough neighborhood of Miami."
[4] "WWII American Army Medic Desmond T. Doss, who served during the Battle of Okinawa, refuses to kill people, and becomes the first man in American history to receive the Medal of Honor without firing a shot."
[5] "A spacecraft traveling to a distant colony planet and transporting thousands of people has a malfunction in its sleep chambers. As a result, two passengers are awakened 90 years early."
[6] "After the Bergens invade Troll Village, Poppy, the happiest Troll ever born, and the curmudgeonly Branch set off on a journey to rescue her friends."
# 爬取runtime section
runtime_data_html <- html_nodes(webpage,'.text-muted .runtime')
# 转为文本
runtime_data <- html_text(runtime_data_html)
# 检查一下
head(runtime_data)
[1] "108 min" "107 min" "111 min" "139 min" "116 min" "92 min"
# 数据预处理: 去除“min”并把数字转换为数值型
runtime_data <- gsub(" min","",runtime_data)
runtime_data <- as.numeric(runtime_data)
# 再检查一下
head(rank_data)
[1] 1 2 3 4 5 6
# 爬取genre
genre_data_html <- html_nodes(webpage,'.genre')
# 转为文本
genre_data <- html_text(genre_data_html)
# 检查一下
head(genre_data)
[1] "\nAnimation, Comedy, Family "
[2] "\nAnimation, Adventure, Comedy "
[3] "\nDrama "
[4] "\nBiography, Drama, History "
[5] "\nAdventure, Drama, Romance "
[6] "\nAnimation, Adventure, Comedy "
# 去除“\n”
genre_data<-gsub("\n","",genre_data)
# 去除多余空格
genre_data<-gsub(" ","",genre_data)
# 每部电影只保留第一种类型
genre_data<-gsub(",.*","",genre_data)
# 转化为因子
genre_data<-as.factor(genre_data)
# 再检查一下
head(genre_data)
[1] Animation Animation Drama Biography Adventure Animation
10 Levels: Action Adventure Animation Biography Comedy Crime Drama ... Thriller
# 爬取IMDB rating
rating_data_html <- html_nodes(webpage,'.ratings-imdb-rating strong')
# 转为文本
rating_data <- html_text(rating_data_html)
# 检查一下
head(rating_data)
[1] "7.2" "7.7" "7.6" "8.2" "7.0" "6.5"
# 转为数值型
rating_data<-as.numeric(rating_data)
# 再检查一下
head(rating_data)
[1] 7.2 7.7 7.6 8.2 7.0 6.5
# 爬取votes section
votes_data_html <- html_nodes(webpage,'.sort-num_votes-visible span:nth-child(2)')
# 转为文本
votes_data <- html_text(votes_data_html)
# 检查一下
head(votes_data)
[1] "40,603" "91,333" "112,609" "177,229" "148,467" "32,497"
# 移除“,”
votes_data<-gsub(",", "", votes_data)
# 转为数值型
votes_data<-as.numeric(votes_data)
# 再检查一下
head(votes_data)
[1] 40603 91333 112609 177229 148467 32497
# 爬取directors section
directors_data_html <- html_nodes(webpage,'.text-muted+ p a:nth-child(1)')
# 转为文本
directors_data <- html_text(directors_data_html)
# 检查一下
head(directors_data)
[1] "Christophe Lourdelet" "Ron Clements" "Barry Jenkins"
[4] "Mel Gibson" "Morten Tyldum" "Walt Dohrn"
# 转为因子
directors_data<-as.factor(directors_data)
# 爬取actors section
actors_data_html <- html_nodes(webpage,'.lister-item-content .ghost+ a')
# 转为文本
actors_data <- html_text(actors_data_html)
# 检查一下
head(actors_data)
[1] "Matthew McConaughey" "Auli'i Cravalho" "Mahershala Ali"
[4] "Andrew Garfield" "Jennifer Lawrence" "Anna Kendrick"
# 转为因子
actors_data<-as.factor(actors_data)
我时爬Metascore时遇到问题,我希望你能仔细看看。
# 爬取metascore section
metascore_data_html <- html_nodes(webpage,'.metascore')
# 转为文本
metascore_data <- html_text(metascore_data_html)
# 检查一下
head(metascore_data)
[1] "59 " "81 " "99 " "71 " "41 "
[6] "56 "
# 去除多余空格
metascore_data<-gsub(" ","",metascore_data)
# 检查metascore data的长度
length(metascore_data)
[1] 96
Step 8: meta score只有96个数据,可我们却爬取了100部电影。这个问题产生的原型是由4部电影没有Metascore数据。
Step 9: 这是爬取所有网页都会遇到的常见问题,如果我们只是简单地用NA来填充这四个缺失值,它会自动填充第97到100部电影。通过一些可视化检查,我们发缺失matascore的是第39,73,80和89部电影。我用下面的函数来解决这个问题。
for (i in c(39,73,80,89)){
a <- metascore_data[1:(i-1)]
b<-metascore_data[i:length(metascore_data)]
metascore_data <- append(a, list("NA"))
metascore_data <- append(metascore_data, b)
}
# 转换为数值型
metascore_data <- as.numeric(metascore_data)
# 再次检查下长度
length(metascore_data)
[1] 100
# 看看描述性统计量
summary(metascore_data)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
23.00 47.00 60.00 60.22 74.00 99.00 4
Step 10: 同样的问题也会发生在Gross变量上,我用同样的方式来解决。
# 爬取revenue section
gross_data_html <- html_nodes(webpage,'.ghost~ .text-muted+ span')
# 转为文本
gross_data <- html_text(gross_data_html)
# 检查一下
head(gross_data)
[1] "$269.36M" "$248.04M" "$27.50M" "$67.12M" "$99.47M" "$153.67M"
# 去除'$' 和 'M' 标记
gross_data <- gsub("M", "", gross_data)
gross_data <- substring(gross_data, 2, 6)
# 检查长度
length(gross_data)
[1] 86
# 填充缺失值
for (i in c(17,39,49,52,57,64,66,73,76,77,80,87,88,89)){
a <- gross_data[1:(i-1)]
b <- gross_data[i:length(gross_data)]
gross_data <- append(a, list("NA"))
gross_data <- append(gross_data, b)
}
# 转为数值
gross_data<-as.numeric(gross_data)
# 再次检车长度
length(gross_data)
[1] 100
summary(gross_data)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.08 15.52 54.69 96.91 119.50 530.70 14
Step 11: .我们已经成功爬取了100部电影的11个特征,让我们创建一个数据框并看看结构。
# 合并所有list来创建一个数据框
movies_df <- data.frame(
Rank = rank_data,
Title = title_data,
Description = description_data,
Runtime = runtime_data,
Genre = genre_data,
Rating = rating_data,
Metascore = metascore_data,
Votes = votes_data,
Gross_Earning_in_Mil = gross_data,
Director = directors_data,
Actor = actors_data
)
# 查看数据框结构
str(movies_df)
'data.frame' : 100 obs. of 11 variables:
$ Rank : num 1 2 3 4 5 6 7 8 9 10 ...
$ Title : Factor w/ 99 levels "10 Cloverfield Lane",..: 66 53 54 32 58 93 8 43 97 7 ...
$ Description : Factor w/ 100 levels "19-year-old Billy Lynn is brought home for a victory tour after a harrowing Iraq battle. Through flashbacks the film shows what"| __truncated__,..: 57 59 3 100 21 33 90 14 13 97 ...
$ Runtime : num 108 107 111 139 116 92 115 128 111 116 ...
$ Genre : Factor w/ 10 levels "Action","Adventure",..: 3 3 7 4 2 3 1 5 5 7 ...
$ Rating : num 7.2 7.7 7.6 8.2 7 6.5 6.1 8.4 6.3 8 ...
$ Metascore : num 59 81 99 71 41 56 36 93 39 81 ...
$ Votes : num 40603 91333 112609 177229 148467 ...
$ Gross_Earning_in_Mil: num 269.3 248 27.5 67.1 99.5 ...
$ Director : Factor w/ 98 levels "Andrew Stanton",..: 17 80 9 64 67 95 56 19 49 28 ...
$ Actor : Factor w/ 86 levels "Aaron Eckhart",..: 59 7 56 5 42 6 64 71 86 3 ...
现在2016年上映的最流行的100部故事片在IMDB上的数据已经爬取成功了!
6. 分析从网页爬取的数据
爬取好数据后,你们队数据进行一些分析与推断,训练一些机器学习模型。我在上面这个数据集的基础上做了一些有趣的可视化来回答下面的问题。
library('ggplot2')
qplot(data = movies_df,Runtime,fill = Genre,bins = 30)
**Question 1: ** 那个类型的电影市场最长?
ggplot(movies_df,aes(x=Runtime,y=Rating))+
geom_point(aes(size=Votes,col=Genre))
**Question 2: ** 市场130-160分钟的电影里,哪一类型东西好评率最高?
ggplot(movies_df,aes(x=Runtime,y=Gross_Earning_in_Mil))+
geom_point(aes(size=Rating,col=Genre))
**Question 3: ** 100-120分钟的电影中,哪类作品的票房成绩最好
结语
我相信本文会让你对利用R爬取网页有一定了解,你对采集数据过程中可能遇到的问题也有所涉猎了。由于网页上的大部分数据是非结构化的,爬虫真的是非常重要的一项技能。
原文链接:https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-hands-on-knowledge/
说在前面 如果读过了上一篇文章,应该对Rcurl和XML包进行爬虫有了一定得了解。实际上,这个组合虽然功能强大,但是经常会出一点意想不到的小问题。这篇文章我将介绍更便捷的Rvest包真正的快速爬取想要的数据。
主要内容
还是以上篇文章的豆瓣图书 Top250为例,我们只需要以下几行代码就可以实现与上文一样的效果:
library(rvest)
web<-read_html("https://book.douban.com/top250?icn=index-book250-all",encoding="UTF-8")
position<-web %>% html_nodes("p.pl") %>% html_text()
逐行解读一下。
第一行是加载Rvest包。
第二行是用read_html函数读取网页信息(类似Rcurl里的getURL),在这个函数里只需写清楚网址和编码(一般就是UTF-8)即可。
第三行是获取节点信息。用%>%符号进行层级划分。web就是之前存储网页信息的变量,所以我们从这里开始,然后html_nodes()函数获取网页里的相应节点。在下面代码里我简单的重现了原网页里的一个层级结构。可以看到,实际上我们要爬取的信息在25个class属性为pl的
标签里的文本。
[清] 曹雪芹 著 / 人民文学出版社 / 1996-12 / 59.70元
而对于这样的结构,在htmlnodes()函数里的写法就是简单的 "p.pl",其中“.”表示class属性的值,如果是id属性则用“#”,如果大家学过CSS选择器就很好理解了,是完全一致的。
最后我们用html_text()函数表示获取文本信息,否则返回的是整个
标签。总体上用以下一行代码就可以实现:
position<-web %>% html_nodes("p.pl") %>% html_text()
比较与XML获取节点的方法(如下行代码),其实二者是异曲同工的,只不过将“/”分隔换为了“%>%”,同时个别写法有些许调整。
node<-getNodeSet(pagetree, "//p[@class='pl']/text()")
最终如果我们打印出这个变量的内容,就会发现和上篇文章中的爬取内容是一致的:
> position
[1] "[美] 卡勒德·胡赛尼 / 李继宏 / 上海人民出版社 / 2006-5 / 29.00元"
[2] "[法] 圣埃克苏佩里 / 马振聘 / 人民文学出版社 / 2003-8 / 22.00元"
[3] "钱锺书 / 人民文学出版社 / 1991-2 / 19.00"
[4] "余华 / 南海出版公司 / 1998-5 / 12.00元"
[5] "[日] 东野圭吾 / 刘姿君 / 南海出版公司 / 2008-9 / 29.80元"
[6] "[日] 村上春树 / 林少华 / 上海译文出版社 / 2001-2 / 18.80元"
[7] "(日)东野圭吾 / 李盈春 / 南海出版公司 / 2014-5 / 39.50元"
[8] "[捷克] 米兰·昆德拉 / 许钧 / 上海译文出版社 / 2003-7 / 23.00元"
[9] "[清] 曹雪芹 著 / 人民文学出版社 / 1996-12 / 59.70元"
[10] "刘慈欣 / 重庆出版社 / 2008-1 / 23.00"
[11] "郭敬明 / 春风文艺出版社 / 2003-11 / 20.00元"
[12] "[美] 丹·布朗 / 朱振武 / 上海人民出版社 / 2004-2 / 28.00元"
[13] "[日] 东野圭吾 / 刘子倩 / 南海出版公司 / 2008-9 / 28.00"
[14] "韩寒 / 国际文化出版公司 / 2010-9 / 25.00元"
[15] "柴静 / 广西师范大学出版社 / 2013-1-1 / 39.80元"
[16] "顾漫 / 朝华出版社 / 2007-4 / 15.00元"
[17] "[英] 夏洛蒂·勃朗特 / 世界图书出版公司 / 2003-11 / 18.00元"
[18] "路遥 / 人民文学出版社 / 2005-1 / 64.00元"
[19] "[英] J. K. 罗琳 / 苏农 / 人民文学出版社 / 2000-9 / 19.50元"
[20] "[哥伦比亚] 加西亚·马尔克斯 / 范晔 / 南海出版公司 / 2011-6 / 39.50元"
[21] "[美国] 玛格丽特·米切尔 / 李美华 / 译林出版社 / 2000-9 / 40.00元"
[22] "李可 / 陕西师范大学出版社 / 2007-9 / 26.00元"
[23] "韩寒 / 作家出版社 / 2000-5 / 16.00"
[24] "刘瑜 / 上海三联书店 / 2010-1 / 25.00元"
[25] "张爱玲 / 花城出版社 / 1997-3-1 / 11.00"
想要学习更多,我们可以在Rstudio里的命令行输入如下代码查询html_nodes()函数的相关用法:
Rvest这个包的说明文档里给出了一些其他例子:
ateam <- read_html("http://www.boxofficemojo.com/movies/?id=ateam.htm")
ateam %>% html_nodes("center") %>% html_nodes("td")
ateam %>% html_nodes("center") %>% html_nodes("font")
library(magrittr)
ateam %>% html_nodes("table") %>% extract2(1) %>% html_nodes("img")
ateam %>% html_nodes("table") %>% `[[`(1) %>% html_nodes("img")
ateam %>% html_nodes("table") %>% `[`(1:2) %>% html_nodes("img")
ateam %>% html_nodes("table") %>% extract(1:2) %>% html_nodes("img")
下面也一并讲解一下:
ateam <- read_html("http://www.boxofficemojo.com/movies/?id=ateam.htm")
首先,所有的例子都是基于同一个网站,我们把这个网站存储在ateam变量里。
然后下面两行代码分别获取了ateam这个网页里
标签里的全部内容和标签里的全部内容
ateam %>% html_nodes("center") %>% html_nodes("td")
ateam %>% html_nodes("center") %>% html_nodes("font")
运行结果如下,可见
标签下有7个标签,一个标签:
{xml_nodeset (7)}
[1] \n Domestic Total Gross: $77,222, ...
[2] Distributor: Fox Release Date: Genre: Action
[5] Runtime: 1 hrs. 57 min.
[6] MPAA Rating: PG-13
[7] Production Budget: $110 million
{xml_nodeset (1)}
[1] Domestic Total Gross: $77,222,099
接着官方例子中还给出了获取特定序位的html标签的方法,用到了magrittr包里的extract2函数:
library(magrittr)
ateam %>% html_nodes("table") %>% extract2(1) %>% html_nodes("img")
ateam %>% html_nodes("table") %>% `[[`(1) %>% html_nodes("img")
上面两行代码都可以获得该网页中第一个
标签(由extract2(1)或`[[`(1)获取)中的所有 标签里的内容,运行结果如下:
{xml_nodeset (6)}
[1]
[5]
[6]
同理我们也可以获得网页里前两个
标签储存的所有 标签里的内容:
ateam %>% html_nodes("table") %>% `[`(1:2) %>% html_nodes("img")
ateam %>% html_nodes("table") %>% extract(1:2) %>% html_nodes("img")
本篇文章就到此为止了,之后我将继续讲解关于正则以及R中stringr包的相关内容,对获取的字符串进行进一步的处理操作。
结语
更多内容请关注我的专栏:R语言与数据挖掘 - 知乎专栏
或关注我本人知乎主页:温如
R语言学习:使用rvest包抓取网页数据
无鱼二饼 关注
2017.03.10 23:15* 字数 634 阅读 3636
rvest是R语言一个用来做网页数据抓取的包,包的介绍就是“更容易地收割(抓取)网页”。其中html_nodes()函数查找标签的功能非常好用。以抓取天猫搜索结果页的宝贝数据为例说明rvest的使用。
分析网页
打开天猫,按F12键打开浏览器的开发工具。个人用的火狐,谁让Chrom不支持linux了,唉。不过还是chrome好用啊。其他浏览器都有类似的功能。
随便搜索个啥,比如核弹,我草还真出结果了!
接下来,在浏览器的开发工具"查看器"中查看网页的源码。或者按一下CTRL+SHIFT+C,选择任意宝贝。可以看到宝贝的图片、月销量等数据都是包含在...
块中的。
打开该div块,哈哈,咱们需要的商品图片、链接、月销量、价格,以及商户名称等,都可以在里面找到了。话说,猫爹其实挺开放的,没有做太多限制,不然想抓这些数据就麻烦了。
接下来启动R,以下是用rvest包抓取宝贝数据的过程
安装rvest包 install.packages("rvest")
加载rvest包 library(rvest)
保存搜索链接到对象gurl,链接的拼接方式挺有规律的 gurl <- "https://list.tmall.com/search_product.htm?q=%C9%AD%B1%C8%B0%C2&type=p&vmarket=&spm=875.7931836%2FB.a2227oh.d100&from=mallfp..pc_1_searchbutton"
抓取数据保存到对象md中
%>%是管道操作符,意思是把左边的操作结果作为参数传递给右边的命令
div.product-iWrap 是CSS选择器的语法,即是 div class="div.product-iWarp" md <- gurl %>%
read_html(encoding="GBK") %>% # 读取gurl的链接,指定编码为gbk
html_nodes("div.product-iWrap") # 筛选出所有包含在...
块的内容
从对象md继续筛选,获卖家名称等数据。
html_attr("data-nick") 是从html_nodes()筛选出的标签中,查找data-nick属性的值。
gsub()是字符串查找替换的函数,pattern是指定用来查找的正则表达式。
html_nodes("p.productTitle>a[title]"),”>"指定的筛选条件的父级标签。
html_text() 只抓取<标签>内容标签>中的内容部分。
# 抓取卖家昵称和ID
sellerNick <- md %>% html_nodes("p.productStatus>span[class]") %>%
html_attr("data-nick")
sellerId <- md %>% html_nodes("p.productStatus>span[data-atp]") %>%
html_attr("data-atp") %>%
gsub(pattern="^.*,",replacement="")
# 抓取宝贝名称等数据
itemTitle <- md %>% html_nodes("p.productTitle>a[title]") %>%
html_attr("title")
itemId <- md %>% html_nodes("p.productStatus>span[class]") %>%
html_attr("data-item")
price <- md %>% html_nodes("em[title]") %>%
html_attr("title") %>%
as.numeric
volume <- md %>% html_nodes("span>em") %>%
html_text
# 最后保存成数据框对象并存盘备用,以及写入csv文件
options(stringsAsFactors = FALSE) # 设置字符串不自动识别为因子
itemData <- data.frame(sellerNick=sellerNick,
sellerId=sellerId,itemTitle=itemTitle,
itemId=itemId,
price=price,
volume=volume)
save(itemData,file="F:/mydata/itemData.rData")
write.csv(itemData,file="F:/mydata/itemData.csv")
补充一个用rvest从赶集网抓取二手房单页面数据的代码
getData <- function(gurl){
# 抓取赶集网二手房源单页的数据
library(rvest)
# 赶集网首页筛选长沙-雨花区-砂子塘的二手房源,获得链接,o1为页数
# gurl <- "http://cs.ganji.com/fang5/yuhuashazitang/o1/"
tmp <- gurl %>% html_session %>%
read_html(encoding="utf-8") %>%
html_nodes("div.f-main-list>div>div")
# 单个房源的puid
puid <- tmp %>% html_attr("id")
# 单个房源的链接
itemURL <-tmp %>% html_attr("href") %>%
gsub(pattern="/fang5",replacement="http://cs.ganji.com/fang5")
# 缩略图链接
smallImg <- tmp %>% html_nodes("dl>dt>div>a>img") %>% html_attr("src")
# 标题
iTitle <- tmp %>% html_nodes("dl>dd>a") %>% html_attr("title")
# 户型
iLayout <- tmp %>% html_nodes("dl>dd[data-huxing]") %>% html_attr("data-huxing")
# 面积
iArea <- tmp %>% html_nodes("dl>dd[data-huxing]") %>%
html_attr("data-area") %>%
gsub(pattern="[^0-9]",replacement="")
# 筛选朝向等数据
iTmp <- tmp %>% html_nodes("dl>dd[data-huxing]>span") %>% html_text
iOrientation <- iTmp[seq(from=5,to=length(iTmp),by=9)] # 提取朝向
iFloor <- iTmp[seq(from=7,to=length(iTmp),by=9)] %>% # 提取楼层
gsub(pattern="\n",replacement="")
iDecoration <- iTmp[seq(from=9,to=length(iTmp),by=9)] # 提取装修
# 提取地址
iAddr <- tmp %>% html_nodes("dl>dd>span.area") %>% html_text %>%
gsub(pattern="\n",replacement=" ") %>%
gsub(pattern=" ",replacement="")
# 提取价格
iPrice <- tmp %>% html_nodes("dl>dd>div.price>span:first-child") %>% html_text
# 提取单价
iTime <- tmp %>% html_nodes("dl>dd>div.time") %>% html_text %>%
gsub(pattern="[^0-9]",replacement="") %>% as.numeric
# 合并数据框
iData <- data.frame(puid=puid,
iLayout=iLayout,
iArea=iArea,
iPrice=iPrice,
iTime=iTime,
iDecoration=iDecoration,
iFloor=iFloor,
iOrientation=iOrientation,
itemURL=itemURL,
smallImg=smallImg,
iTitle=iTitle,
iAddr=iAddr,
stringsAsFactors=FALSE)
# 返回数据框
return(iData)
}
你可能感兴趣的:(r语言,爬虫,runtime)
Python爬虫解析工具之xpath使用详解
eqa11
python 爬虫 开发语言
文章目录Python爬虫解析工具之xpath使用详解一、引言二、环境准备1、插件安装2、依赖库安装三、xpath语法详解1、路径表达式2、通配符3、谓语4、常用函数四、xpath在Python代码中的使用1、文档树的创建2、使用xpath表达式3、获取元素内容和属性五、总结Python爬虫解析工具之xpath使用详解一、引言在Python爬虫开发中,数据提取是一个至关重要的环节。xpath作为一门
nosql数据库技术与应用知识点
皆过客,揽星河
NoSQL nosql 数据库 大数据 数据分析 数据结构 非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
Java爬虫框架(一)--架构设计
狼图腾-狼之传说
java 框架 java 任务 html解析器 存储 电子商务
一、架构图那里搜网络爬虫框架主要针对电子商务网站进行数据爬取,分析,存储,索引。爬虫:爬虫负责爬取,解析,处理电子商务网站的网页的内容数据库:存储商品信息索引:商品的全文搜索索引Task队列:需要爬取的网页列表Visited表:已经爬取过的网页列表爬虫监控平台:web平台可以启动,停止爬虫,管理爬虫,task队列,visited表。二、爬虫1.流程1)Scheduler启动爬虫器,TaskMast
Java:爬虫框架
dingcho
Java java 爬虫
一、ApacheNutch2【参考地址】Nutch是一个开源Java实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具。包括全文搜索和Web爬虫。Nutch致力于让每个人能很容易,同时花费很少就可以配置世界一流的Web搜索引擎.为了完成这一宏伟的目标,Nutch必须能够做到:每个月取几十亿网页为这些网页维护一个索引对索引文件进行每秒上千次的搜索提供高质量的搜索结果简单来说Nutch支持分
WebMagic:强大的Java爬虫框架解析与实战
Aaron_945
Java java 爬虫 开发语言
文章目录引言官网链接WebMagic原理概述基础使用1.添加依赖2.编写PageProcessor高级使用1.自定义Pipeline2.分布式抓取优点结论引言在大数据时代,网络爬虫作为数据收集的重要工具,扮演着不可或缺的角色。Java作为一门广泛使用的编程语言,在爬虫开发领域也有其独特的优势。WebMagic是一个开源的Java爬虫框架,它提供了简单灵活的API,支持多线程、分布式抓取,以及丰富的
00. 这里整理了最全的爬虫框架(Java + Python)
有一只柴犬
爬虫系列 爬虫 java python
目录1、前言2、什么是网络爬虫3、常见的爬虫框架3.1、java框架3.1.1、WebMagic3.1.2、Jsoup3.1.3、HttpClient3.1.4、Crawler4j3.1.5、HtmlUnit3.1.6、Selenium3.2、Python框架3.2.1、Scrapy3.2.2、BeautifulSoup+Requests3.2.3、Selenium3.2.4、PyQuery3.2
python爬取微信小程序数据,python爬取小程序数据
2301_81900439
前端
大家好,小编来为大家解答以下问题,python爬取微信小程序数据,python爬取小程序数据,现在让我们一起来看看吧!Python爬虫系列之微信小程序实战基于Scrapy爬虫框架实现对微信小程序数据的爬取首先,你得需要安装抓包工具,这里推荐使用Charles,至于怎么使用后期有时间我会出一个事例最重要的步骤之一就是分析接口,理清楚每一个接口功能,然后连接起来形成接口串思路,再通过Spider的回调
大模型训练数据库Common Crawl
WindyChanChan
数据集 语言模型 数据库
CommonCrawl介绍CommonCrawl是一个非营利组织,致力于通过大规模分布式爬虫系统定期抓取整个Web并将其存储在一个可公开访问的数据库中。CommonCrawl的数据收集和处理过程包括使用Python开源爬虫工具收集全球范围内的网站数据,并将其上传到CommonCrawl基金会的数据仓库中。该项目从2008年开始,至今已经积累了大量的原始网页数据、元数据和文本提取数据。这些数据
Python精选200Tips:121-125
AnFany
Python200+Tips python 开发语言
Spendyourtimeonself-improvement121Requests-简化的HTTP请求处理发送GET请求发送POST请求发送PUT请求发送DELETE请求会话管理处理超时文件上传122BeautifulSoup-网页解析和抓取解析HTML和XML文档查找单个标签查找多个标签使用CSS选择器查找标签提取文本修改文档内容删除标签处理XML文档123Scrapy-强大的网络爬虫框架示例
爬虫技术抓取网站数据被限制怎么处理
Bearjumpingcandy
爬虫
爬虫技术用于抓取网站数据时,可能会遇到一些限制,常见的包括反爬机制、速率限制、IP封禁等。以下是应对这些情况的一些策略:尊重robots.txt:每个网站都有robots.txt文件,遵循其中的规定可以避免触犯网站的抓取规则。设置合理频率:控制爬虫请求的速度,通过添加延迟或使用代理服务器,减少对目标网站的压力。使用代理:获取并使用代理IP地址可以更换访问来源,降低被识别的可能性。模拟用户行为:使用
网站推广爬虫
Bearjumpingcandy
爬虫
网站推广爬虫是一种用于升网站曝光度和推广效果的工具。它通过自动化地访问和收集网站信息,从而实现对目标网站的广告、关键词、排名等数据进行分析和优化。以下是网站推广爬虫的一些介绍:数据收集:网站推广爬虫可以自动访问目标网站,并收集相关的数据,如网站流量、关键词排名、竞争对手信息等。这些数据可以帮助网站推广人员了解网站的现状和竞争环境,从而制定相应的推广策略。关键词优化:通过分析搜索引擎的关键词排名情况
爬虫技术抓取网站数据
Bearjumpingcandy
爬虫
爬虫技术是一种自动化获取网站数据的技术,它可以模拟人类浏览器的行为,访问网页并提取所需的信息。以下是爬虫技术抓取网站数据的一般步骤:发起HTTP请求:爬虫首先会发送HTTP请求到目标网站,获取网页的内容。解析HTML:获取到网页内容后,爬虫会使用HTML解析器解析HTML代码,提取出需要的数据。数据提取:通过使用XPath、CSS选择器或正则表达式等工具,爬虫可以从HTML中提取出所需的数据,如文
爬虫技术抓取网站数据
Bearjumpingcandy
爬虫
爬虫技术是指通过程序自动访问网页并提取数据的技术。一般来说,爬虫技术包含以下几个步骤:确定目标网站:确定需要抓取的网站,并了解其页面结构和数据特点。分析页面结构:分析网页的结构和源代码,找到需要抓取的数据在页面中的位置和标识。编写爬虫程序:使用编程语言(如Python)编写爬虫程序,实现对目标网站的自动访问和数据提取。处理抓取数据:对抓取到的数据进行清洗、去重、整合等处理,以便后续的分析和利用。爬
爬虫之隧道代理:如何在爬虫中使用代理IP?
2401_87251497
python 开发语言 爬虫 网络 tcp/ip 网络协议
在进行网络爬虫时,使用代理IP是一种常见的方式来绕过网站的反爬虫机制,提高爬取效率和数据质量。本文将详细介绍如何在爬虫中使用隧道代理,包括其原理、优势以及具体的实现方法。无论您是爬虫新手还是有经验的开发者,这篇文章都将为您提供实用的指导。什么是隧道代理?隧道代理是一种高级的代理技术,它通过创建一个加密的隧道,将数据从客户端传输到代理服务器,再由代理服务器转发到目标服务器。这样不仅可以隐藏客户端的真
分享一个基于python的电子书数据采集与可视化分析 hadoop电子书数据分析与推荐系统 spark大数据毕设项目(源码、调试、LW、开题、PPT)
计算机源码社
Python项目 大数据 大数据 python hadoop 计算机毕业设计选题 计算机毕业设计源码 数据分析 spark毕设
作者:计算机源码社个人简介:本人八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!学习资料、程序开发、技术解答、文档报告如需要源码,可以扫取文章下方二维码联系咨询Java项目微信小程序项目Android项目Python项目PHP项目ASP.NET项目Node.js项目选题推荐项目实战|p
基于Python执行lua脚本
xu-jssy
Python自动化脚本 python lua 自动化 rpa
一、依赖安装pipinstalllupa二、源码将lua文件存放在base_path路径,将lua文件名称(不包含后缀名)传递给lua_runner函数即可importmultiprocessingimportlupa#lua文件存放位置base_path='D:\\test\\lua'classLuaFuncion:#创建Lua运行时环境lua=lupa.LuaRuntime(unpack_re
python抓取网页内容401应该用哪个库_python3使用requests模块爬取页面内容入门
坂田月半
python的爬虫相关模块有很多,除了requests模块,再如urllib和pycurl以及tornado等。相比而言,requests模块是相对简单易上手的。通过文本,大家可以迅速学会使用python的requests模块爬取页码内容。1.Requests唯一的一个非转基因的PythonHTTP库,人类可以安全享用。官网:http://cn.python-requests.org/zh_CN/
【Python爬虫】百度百科词条内容
PokiFighting
数据处理 python 爬虫 开发语言
词条内容我这里随便选取了一个链接,用的是FBI的词条importurllib.requestimporturllib.parsefromlxmlimportetreedefquery(url):headers={'user-agent':'Mozilla/5.0(WindowsNT6.1;Win64;x64)AppleWebKit/537.36(KHTML,likeGecko)Chrome/80.
爬虫和代理IP的关系
xiaoxiongip666
爬虫 tcp/ip 服务器
爬虫和代理IP之间的关系是相互依存的。代理IP为爬虫提供了绕过IP限制、隐藏真实IP、提高访问速度等能力,使得爬虫能够更有效地进行数据抓取。然而,在使用时也需要注意合法性、稳定性、成本以及隐私保护等问题。
python语言爬虫爬取歌曲程序代码
EYYLTV
python 爬虫 android
importrequestssong_urls=[“http://music.163.com/song/media/outer/url?id=25795016.mp3”,“https://m703.music.126.net/20240915140140/670dfe5c0144991d4cb778d6662fd762/jd-musicrep-privatecloud-audio-public/o
python语言爬虫爬取歌曲代码X
EYYLTV
python 爬虫 java
importrequestssong_urls=[“https://m804.music.126.net/20240915142147/4e01caa69abda60b165e185607805ee1/jdyyaac/obj/w5rDlsOJwrLDjj7CmsOj/30379084686/b56a/dbd5/39fc/792d87f5d7014bb78547ec3804eeaac5.m4a?au
C# 自动化
TineAine
C# 代码片段 自动化 c# 自动化 模拟操作
实现的方法可能很笨,但是确实很好用usingSystem;usingSystem.Collections.Generic;usingSystem.Linq;usingSystem.Runtime.InteropServices;usingSystem.Text;usingSystem.Threading;usingSystem.Threading.Tasks;/******************
拼多多商家电话采集工具 爬虫教程分享
小电商达人
爬虫
以下是使用Python编写的拼多多商家电话采集爬虫教程:一、前期准备安装Python:从Python官方网站下载并安装最新版本的Python,安装过程中注意勾选将Python添加到系统路径选项。安装相关库:在命令提示符中运行以下命令来安装所需的库。pipinstallrequests:用于发送HTTP请求获取网页内容。pipinstallbeautifulsoup4:用于解析HTML页面。二、分析
Spring Cloud: Hystrix请求队列线程不足
MeazZa
在SpringCloud中,Feign可以实现本地化的微服务API调用,Hystrix可以实现调用失败时的fallback处理。问题描述:在实际生产环境中使用时,我们遇到了这样一个错误:"...,stacktrace:[com.netflix.hystrix.exception.HystrixRuntimeException:QueryNodeImpalaBdService#getQueryRes
Python爬虫代理池
极客李华
python授课 python 爬虫 开发语言
Python爬虫代理池网络爬虫在数据采集和信息抓取方面起到了关键作用。然而,为了应对网站的反爬虫机制和保护爬虫的真实身份,使用代理池变得至关重要。1.代理池的基本概念:代理池是一组包含多个代理IP地址的集合。通过在爬虫中使用代理池,我们能够隐藏爬虫的真实IP地址,实现一定程度的匿名性。这有助于防止被目标网站封锁或限制访问频率。2.为何使用代理池:匿名性:代理池允许爬虫在请求目标网站时使用不同的IP
大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员 大数据 hadoop 人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
【机器学习与R语言】1-机器学习简介
苹果酱0567
面试题汇总与解析 java 中间件 开发语言 spring boot 后端
1.基本概念机器学习:发明算法将数据转化为智能行为数据挖掘VS机器学习:前者侧重寻找有价值的信息,后者侧重执行已知的任务。后者是前者的先期准备过程:数据——>抽象化——>一般化。或者:收集数据——推理数据——归纳数据——发现规律抽象化:训练:用一个特定模型来拟合数据集的过程用方程来拟合观测的数据:观测现象——数据呈现——模型建立。通过不同的格式来把信息概念化一般化:一般化:将抽象化的知识转换成可用
SpringBoot2:web开发常用功能实现及原理解析-整合EasyExcel实现Excel导入导出功能
生产队队长
Spring All excel spring boot
1、工程包结构主要是这5个Java类2、导入EasyExcel包这里同时贴出其他相关springboot的基础包org.springframework.bootspring-boot-starter-weborg.springframework.bootspring-boot-devtoolsruntimetrueorg.springframework.bootspring-boot-config
10个高效的Python爬虫框架,你用过几个?
进击的C语言
python
小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。下面介绍了10个爬虫框架,大家可以学习使用!1.Scrapyscrapy官网:https://scrapy.org/scrapy中文文档:https://www.osgeo.cn/scrapy/intro/oScrapy是一个为了爬取网站数据,提取结构性数据而编写的
K8S学习笔记02——K8S组件
沉淅尘
# Docker # K8S kubernetes
Kubernetes组件一、控制平面组件(ControlPlaneComponents)(1)kube-apiserver(2)etcd(3)kube-scheduler(4)kube-controller-manager(5)cloud-controller-manager二、Node组件1.kubelet2.kube-proxy3.容器运行时(ContainerRuntime)三、插件(Add
scala的option和some
矮蛋蛋
编程 scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
NullPointerException
Cb123456
android BaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
PHP使用文件和目录
天子之骄
php文件和目录 读取和写入 php验证文件 php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
java冒泡排序
3213213333332132
java 冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAO spring Ajax json qq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
struts2 数据标签说明
darkranger
jsp bean struts servlet Scheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
富养还是穷养,决定孩子的一生
bijian1013
教育 人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected] >
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
移位打印10进制数转16进制-2008-08-18
ljy325
java 基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java 设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
利用cmd命令将.class文件打包成jar
chenyu19891124
cmd jar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
[原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse 设计模式 算法 工作 swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
SecureCRT右键粘贴的设置
daizj
secureCRT 右键 粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
如何分析Java虚拟机死锁
sesame
java thread oracle 虚拟机 jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
jsearch的索引文件结构
yangshangchuan
搜索引擎 jsearch 全文检索 信息检索 word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少