- flutter知识点
ZhDan91
flutter
#时隔4年了#4年前用flutter开发海外项目和医疗项目。绘制界面的语法与html还是较类似的。把这些封印的记忆和技术回顾一下,最开始是开发Android出身的,所以开发起flutter来依旧是用的androidstudio开发工具。整理下用到的知识点:整理来源:flutter面试题——基础篇(1)-CSDN博客1、Dart是单线程的。在单线程中以消息循环来运行的。其中敖汉两个任务队列。一个是微
- Java Web 之 Session 详解
艾伦~耶格尔
java开发语言后端前端session
在JavaWeb开发中,Session就像网站的专属记忆管家,为每个用户保管着重要的信息和状态,确保用户在网站的旅程顺畅无阻。场景一:想象你去一家大型超市购物,推着购物车挑选商品。这个购物车就如同Session,它记录了你的购物信息,方便你在结账时一次性结算。场景二:你在玩一个在线游戏,登录账号后,你的游戏进度、等级、装备等信息都会被保存在Session中,即使你中途关闭游戏,下次登录时依然可以继
- MySQL数据库访问(C/C++)
敲上瘾
MySQL数据库mysql数据库c++c语言数据库开发数据库架构
访问数据库的方式:命令行:使用命令行输入SQL指令直接访问。需记忆命令和SQL语法,对新手不友好。正因如此推荐新手使用该方式访问,能倒逼学习者对SQL语法的记忆,并对MySQL更深入理解。图形化界面访问:使用图形化界面工具,如:DBeaver、DataGrip、Navicat、HeidiSQL(MySQL)、MySQLWorkbench。特点:有语法提示,可以直接对数据手动增删改。编程接口:在编写
- LLM Agent在多模态任务中的推理机制详解
文章目录一、引言二、多模态LLMAgent的基本架构2.1系统组成2.2工作流程图三、多模态表示与对齐3.1跨模态嵌入空间3.2模态对齐技术四、多模态推理策略4.1基于提示的推理(Prompt-basedReasoning)4.2多模态思维链(CoT)推理4.3多模态工具使用五、实现案例:多模态问答系统5.1系统架构5.2示例应用六、高级多模态推理技术6.1多模态递归推理6.2多模态记忆与检索6.
- 使用tensorflow的线性回归的例子(十二)
lishaoan77
tensorflowtensorflow线性回归人工智能戴明回归
DemingRegression这里展示如何用TensorFlow求解线性戴明回归。=+y=Ax+b我们用iris数据集,特别是:y=SepalLength且x=PetalWidth。戴明回归Demingregression也称为totalleastsquares,其中我们最小化从预测线到实际点(x,y)的最短的距离。最小二乘线性回归最小化与预测线的垂直距离,戴明回归最小化与预测线的总的距离,这种
- 开源 Arkts 鸿蒙应用 开发(六)数据持久--文件和首选项存储
文章的目的为了记录使用Arkts进行Harmonyapp开发学习的经历。本职为嵌入式软件开发,公司安排开发app,临时学习,完成app的开发。开发流程和要点有些记忆模糊,赶紧记录,防止忘记。相关链接:开源Arkts鸿蒙应用开发(一)工程文件分析-CSDN博客开源Arkts鸿蒙应用开发(二)封装库.har制作和应用-CSDN博客开源Arkts鸿蒙应用开发(三)Arkts的介绍-CSDN博客开源Ark
- LangChain框架 Prompts、Agents 应用
_pass_
大模型学习langchain
目录(Prompts)提示作用Prompts常见操作基础PromptTemplate使用Few-shot提示模板ChatPromptTemplate(对话提示模板)(Agents)代理作用Agents常见操作基础Agent使用自定义工具Agent高级应用示例带记忆的对话代理使用本地模型的代理结构化输出代理LangChain框架Loader、Vectorstores、Chain应用-CSDN博客另外
- # Unity C#进阶:掌握泛型编程,告别重复代码,编写优雅复用的通用组件!(Day26)
吴师兄大模型
C#编程从入门到进阶unityc#游戏引擎c语言开发语言游戏开发泛型编程
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- linux编辑器——vi/vim图解模式,命令速查
泓铮
linux编辑器vim
一、三模式编辑器图解(大学生期末不用细看)快速记忆:只要不知道干啥先按ESC回到初始状态——命令模式,修内容进编辑(微观),看全文进末行(宏观)vi功能+新功能=vim使用vi/vim命令格式方法:1.基本打开方式:vim文件路径这种方式会打开指定的文件,并进入Vim的命令模式。如果文件不存在,Vim会提示你创建它。2.打开文件并跳转到指定行:vim行号文件路径使用这种方式,Vim会打开指定的文件
- Python辅助高效背诵记忆知识点代码解析
少陵野小Tommy
文本处理python学习方法
Python辅助高效背诵记忆知识点代码解析完整代码程序基本逻辑框架材料输入导入材料并分类Type1对策Type2对策打乱答案-问题组程序输出在上一篇博文《Python辅助高效背诵记忆知识点(零基础教程,手机版可用)》中,笔者对该程序的完整代码及使用教程作了详尽的介绍。本文旨在针对代码的内部逻辑作一定的解析。完整代码importrandomD={'uw':'opportunitychance。sen
- Python辅助高效背诵记忆知识点(零基础教程,手机版可用)
Python辅助高效背诵记忆知识点(零基础教程,手机版可用)完整程序代码如何添加背诵材料?Type1Type2如何运行程序?如果你是一名学生(小学生、初中生、高中生、大学生……),总是苦于繁多的知识点难以背诵,苦于每天的英语默写毫无对策,苦于语文名篇名句默写易混淆的字词总是分辨不清……不妨运用如下的这段Python代码辅助背诵,可以大大提高记忆效率。本人高中三年——一直到高考前夕——就是靠这段自编
- 产品思想实验:AMNM,实现 Agent 自主记忆协商机制,铺路记忆拍卖、记忆订阅等商业模式
sluke
思想实验进行到这里,出现了商业问题:记忆作为数字资产,如何在多个Agent之间进行价值化、可交易、可协商的流动?将基于现有的MemoryMetaLanguageProtocol(MMLPv2.0),进一步构建一个Agent自主记忆协商机制(AutonomousMemoryNegotiationMechanism,AMNM),引入“记忆市场”的概念,使AI能够像人类一样——买卖知识、订阅偏好、交换经
- LangChain核心架构深度解析
北辰alk
AIlangchain架构microsoft
文章目录一、分层架构概览二、核心架构组件详解1.模型I/O层(ModelI/O)2.数据连接层(DataConnection)3.链与代理层(Chains&Agents)链式工作流动态代理系统4.记忆系统(Memory)5.回调系统(Callbacks)三、运行时架构1.同步/异步执行流2.分布式执行模式四、扩展架构1.工具集成架构2.企业级扩展五、关键设计模式1.LCEL(LangChainEx
- 用Keras构建爱情模型:破解情侣间的情感密码
忆愿
高质量领域文章keras人工智能深度学习python机器学习自然语言处理神经网络
文章目录一、给情话穿上数字马甲1.1中文分词那些坑1.2停用词过滤玄学二、给神经网络装个情感温度计2.1记忆增强套餐2.2注意力机制实战三、给模型喂点狗粮数据3.1数据增强七十二变3.2标注的艺术四、调参比哄对象还难4.1超参数扫雷指南4.2可视化调参黑科技五、实战演练之保命指南5.1部署成求生APP5.2案例分析库六、当AI遇见现实:模型局限与伦理困境6.1隐私雷区七、从玩具模型到生产系统7.1
- Python列表与元组操作完全指南:从基础到高级应用
XXD啊
python开发语言
目录标题:Python列表与元组操作完全指南:从基础到高级应用前言一、数据结构概述二、创建与初始化三、访问与索引操作四、修改与更新五、常用方法与操作六、性能与内存比较七、高级操作与技巧八、实际应用示例九、记忆表与总结列表与元组方法对比表选择指南:何时使用列表vs元组常见错误与避免方法总结标题:Python列表与元组操作完全指南:从基础到高级应用前言在Python编程中,列表和元组作为两大核心数据结
- 从零开始:构建支持上下文窗口的AI原生应用实战指南
AI天才研究院
AI人工智能与大数据AI-nativeai
从零开始:构建支持上下文窗口的AI原生应用实战指南关键词:大语言模型(LLM)、上下文窗口、AI原生应用、token管理、对话状态保持、向量检索、记忆压缩摘要:本文从AI原生应用的核心需求出发,系统讲解支持上下文窗口的应用构建全流程。通过解析上下文窗口的技术本质、关键挑战及解决方案,结合Python代码实战和真实场景案例,帮助开发者掌握从需求分析到落地部署的完整方法。内容涵盖上下文窗口管理策略、t
- 【计算机网络】第三章:数据链路层(上)
iFulling
计算机网络笔记计算机网络网络网络协议笔记
本篇笔记课程来源:王道计算机考研计算机网络接下节:【计算机网络】第三章:数据链路层(下)【计算机网络】第三章:数据链路层(上)一、数据链路层的功能1.基本概念2.功能总览二、组帧(封装成帧)1.主要实现2.字符计数法3.字节填充法4.零比特填充法5.违规编码法三、差错控制1.主要实现2.检错编码Ⅰ.奇偶校验码Ⅱ.循环冗余校验码3.纠错编码Ⅰ.海明校验码四、流量控制、可靠传输1.相关机制Ⅰ.滑动窗口
- 上下文工程:AI 智能体架构落地的关键新技术
一休哥助手
人工智能人工智能架构
摘要随着大语言模型(LLM)驱动的智能体(Agent)逐渐成为下一代人机交互的核心范式,上下文管理已成为决定智能体性能与可靠性的关键瓶颈。本文提出“上下文工程”(ContextEngineering)作为智能体架构落地的核心技术方向,系统阐述其在解决长上下文依赖、多轮交互一致性、动态知识更新等挑战中的核心作用。通过分层架构设计、动态压缩策略与向量化增强技术,上下文工程显著提升智能体的记忆效率与推理
- 大模型之Spring AI实战系列(三十二):Spring Boot + DeepSeek 实战指南:工具函数(Function Call)实战应用
系列篇章No.文章1大模型之SpringAI实战系列(一):基础认知篇-开启智能应用开发之旅2大模型之SpringAI实战系列(二):SpringBoot+OpenAI打造聊天应用全攻略3大模型之SpringAI实战系列(三):SpringBoot+OpenAI实现聊天应用上下文记忆功能4大模型之SpringAI实战系列(四):SpringBoot+OpenAI使用OpenAIEmbedding实
- 【Go语言-Day 16】从零掌握 Go 函数:参数、多返回值与命名返回值的妙用
吴师兄大模型
Go语言从入门到精通golang开发语言后端go语言函数人工智能大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【Go语言-Day 14】深入解析 map:创建、增删改查与“键是否存在”的奥秘
吴师兄大模型
Go语言从入门到精通golang开发语言后端人工智能pythongo语言大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【机器学习】解密计算机视觉:CNN、目标检测与图像识别核心技术(第25天)
吴师兄大模型
0基础实现机器学习入门到精通机器学习计算机视觉cnn人工智能目标检测图像识别pytorch
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【深度学习-Day 35】实战图像数据增强:用PyTorch和TensorFlow扩充你的数据集
吴师兄大模型
深度学习入门到精通深度学习pytorchtensorflow人工智能python大模型LLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- DNS和ICMP
阿沁QWQ
服务器linux网络
域名介绍在网络通信中,需要用到ip加port,但是ip并不方便记忆,于是我们常用域名来对应一个ip例如:www.baidu.com对应156.36.56.98(随便写的)com:一级域名.表示这是一个企业域名.同级的还有"net"(网络提供商),"org"(非盈利组织)等.baidu:二级域名,公司名.www:只是一种习惯用法.域名解析域名解析分为两步1.查本地/etc/hosts互连网信息中心(
- Gemini CLI 智能记忆系统全景解析:从单点存储到分布式记忆网络的架构进化
步子哥
智能涌现分布式架构人工智能
前言在前面的分析中,我们了解了MemoryTool的基础记忆存储功能。今天,我们将深入探索GeminiCLI记忆系统的完整生态——通过分析memoryDiscovery.ts和memoryImportProcessor.ts,揭示一个更加复杂而精妙的分布式记忆网络¹。这个系统不仅能够存储单点记忆,更能够构建跨文件、跨项目的智能上下文体系。注解1-分布式记忆网络:不同于传统的单文件存储,Gemini
- 技术演进中的开发沉思-29 MFC系列:关于win32
chilavert318
熬之滴水穿石windows开发语言c++
不得不提的,是win32程序已经走在淘汰的边缘了,但今天还是想说说它。若把计算机系统比作一座不断翻新的城市,Win32就像那些承载着城市记忆的老街区。64位系统的普及确实像拓宽了主干道,Win64作为新拓宽的车道,能跑更大更重的“卡车”(处理更大内存、更复杂运算),但老街区的石板路(Win32)依然有它的用处——那些只需要自行车就能到达的目的地(轻量工具、嵌入式设备),没必要非得开卡车。目前国产化
- 什么是智能体(Agent)?
用什么都重名
大模型相关人工智能Agent大模型
目录前言一、大语言模型1.什么是大语言模型?2.应用领域二、什么是Agent三、Agent核心特点1.感知能力2.规划能力3.行动能力4.记忆能力总结前言目前智能体市场正处于快速发展阶段,呈现出市场规模增长迅猛、应用领域广泛、竞争格局多元化等特点。基于此,让我们一起来学习一下何为智能体。一、大语言模型1.什么是大语言模型?大语言模型是一种采用大量数据进行训练的人工智能模型,主要用于理解和生成自然语
- Gemini CLI 的记忆之谜:深入 `GEMINI.md` 的分层上下文系统
步子哥
智能涌现人工智能
如果你曾与GeminiCLI协作,你可能会惊叹于它的“记忆力”。它不仅能理解你当前项目的复杂结构,还能记住你在不同项目中设定的特定规范。这种近乎“心有灵犀”的默契背后,隐藏着一个强大而精妙的设计——GEMINI.md文件。但GEMINI.md并非一块简单的记事板。它是一个动态的、分层的、可组合的上下文系统,是GeminiCLI的“数字大脑”。今天,就让我们化身神经科学家,一同解剖这个大脑,探寻其记
- OpenCV实战之二 | 基于哈希算法比较图像的相似性
w94ghz
OpenCV实战笔记opencv哈希算法人工智能
前言☘️本章节主要介绍常用的图像相似性评价算法:图像哈希算法。图像哈希算法通过获取图像的哈希值并比较两幅图像的哈希值的汉明距离来衡量两幅图像是否相似。两幅图像越相似,其哈希值的汉明距离越小。图像哈希算法可以用于图片检索,重复图片剔除,以图搜图以及图片相似度比较。目录一、汉明距离二、img_hash模块三、哈希算法哈希算法实现步骤:代码实现一、汉明距离汉明距离(HammingDistance)是用于
- Vue和JSX的对比
妮妮喔妮
vue.js前端javascript
对比Vue与JSX-豆包没问题!我来举几个具体例子,对比VueTemplate和JSX在处理静态/动态内容时的写法差异,帮你更直观地感受两种语法的区别:https://www.doubao.com/thread/wb38f2ba78ea372ef总之我觉得写的非常好呀。想要记忆还是要付出行动,多练习!
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi