百度AI攻略:手势识别

1.功能描述:

识别图片中的手部位置和手势类型,可识别24种常见手势,包括拳头、OK、比心、作揖、作别、祈祷、我爱你、点赞、Diss、Rock、竖中指、数字等

2.平台接入

具体接入方式比较简单,可以参考我的另一个帖子,这里就不重复了:

http://ai.baidu.com/forum/topic/show/943327

3.调用攻略(Python3)及评测

3.1首先认证授权:

在开始调用任何API之前需要先进行认证授权,具体的说明请参考:

http://ai.baidu.com/docs#/Auth/top

具体Python3代码如下:

# -*- coding: utf-8 -*-

#!/usr/bin/env python

import urllib

import base64

import json

#client_id 为官网获取的AK, client_secret 为官网获取的SK

client_id =【百度云应用的AK】

client_secret =【百度云应用的SK】

#获取token

def get_token():

host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=' + client_id + '&client_secret=' + client_secret

request = urllib.request.Request(host)

request.add_header('Content-Type', 'application/json; charset=UTF-8')

response = urllib.request.urlopen(request)

token_content = response.read()

if token_content:

token_info = json.loads(token_content)

token_key = token_info['access_token']

return token_key

3.2手势识别分析接口调用:

详细说明请参考: https://ai.baidu.com/docs#/Body-API/43eb40cf

说明的比较清晰,这里就不重复了。

大家需要注意的是:

API访问URL:https://aip.baidubce.com/rest/2.0/image-classify/v1/gesture

图像数据,base64编码后进行urlencode,要求base64编码和urlencode后大小不超过4M。图片的base64编码是不包含图片头的,如(data:image/jpg;base64,),支持图片格式:jpg、bmp、png,最短边至少50px,最长边最大4096px

Python3调用代码如下:

#画出手势识别结果

def draw_gestures(originfilename,gestures,resultfilename):

    from PIL import Image, ImageDraw

    image_origin = Image.open(originfilename)

    draw =ImageDraw.Draw(image_origin)


    for gesture in gestures:

        draw.rectangle((gesture['left'],gesture['top'],gesture['left']+gesture['width'],gesture['top']+gesture['height']),outline = "red")

        draw.text((gesture['left'],gesture['top']), gesture['classname'],"blue")

    image_origin.save(resultfilename, "JPEG")


#手势识别

#filename:原图片名(本地存储包括路径)

def gesture(filename,resultfilename):

    request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/gesture"

    print(filename)

    # 二进制方式打开图片文件

    f = open(filename, 'rb')

    img = base64.b64encode(f.read())


    params = dict()

    params['image'] = img

    params = urllib.parse.urlencode(params).encode("utf-8")

    #params = json.dumps(params).encode('utf-8')


    access_token = get_token()

    begin = time.perf_counter()

    request_url = request_url + "?access_token=" + access_token

    request = urllib.request.Request(url=request_url, data=params)

    request.add_header('Content-Type', 'application/x-www-form-urlencoded')

    response = urllib.request.urlopen(request)

    content = response.read()

    end = time.perf_counter()

    print('处理时长:'+'%.2f'%(end-begin)+'秒')

    if content:

        #print(content)

        content=content.decode('utf-8')

        #print(content)

        data = json.loads(content)

        #print(data)

        result=data['result']

        print(result)

        draw_gestures(filename,result,resultfilename)


gesture('../img/gesture4.jpg','../img/gesture4_result.jpg') 

4.功能评测:

选用不同的数据对效果进行测试,具体效果如下(以下例子均来自网上):

处理时长:0.54秒

[{'probability': 0.5360070466995239, 'top': 97, 'height': 206, 'classname': 'Two', 'width': 170, 'left': 7}, {'probability': 0.4020222723484039, 'top': 104, 'height': 137, 'classname': 'Face', 'width': 139, 'left': 138}]

处理时长:0.58秒

[{'probability': 0.5303723812103271, 'top': 28, 'height': 267, 'classname': 'Nine', 'width': 334, 'left': 28}]

处理时长:0.81秒

[{'probability': 0.9833292961120605, 'top': 2, 'height': 179, 'classname': 'Face', 'width': 161, 'left': 168}, {'probability': 0.9321802258491516, 'top': 232, 'height': 132, 'classname': 'Six', 'width': 202, 'left': 215}]

处理时长:0.60秒

[{'probability': 0.9572300314903259, 'top': 148, 'height': 150, 'classname': 'Five', 'width': 149, 'left': 345}, {'probability': 0.9406964778900146, 'top': 112, 'height': 151, 'classname': 'Five', 'width': 155, 'left': 96}, {'probability': 0.8912005424499512, 'top': 184, 'height': 135, 'classname': 'Five', 'width': 111, 'left': 13}]

5.测试结论和建议

测试下来,整体识别效果不错。对于手势有较强的识别能力,效果很好,速度也很快。可以广泛的应用于:

智能家居:智能家电、家用机器人、可穿戴、儿童教具等硬件设备,通过用户的手势控制对应的功能,人机交互方式更加智能化、自然化

视频直播:视频直播或者拍照过程中,结合用户的手势(如点赞、比心),实时增加相应的贴纸或特效,丰富交互体验

智能驾驶:将手势识别应用到驾驶辅助系统中,使用手势来控制车内的各种功能、参数,一定程度上解放双眼,将更多的注意力放在道路上,提升驾车安全性

等领域,不过对于多个手势的图片,识别率还有提高的空间,希望后续进一步提高。

同时建议增加打响指的手势识别,这样我们才能做出像钢铁侠那样打个响指拯救世界的效果。

你可能感兴趣的:(百度AI攻略:手势识别)