学习笔记——空间计量(其二 详细版)

天鹰—2021

天鹰(中南财大——博士研究生)
E-mail: [[email protected]]

前文主要讲解了常用的空间权重矩阵的具体操作,明白了空间权重矩阵在整个空间计量模型中的重要作用,当然,除了上述常见的几种空间矩阵外,我们在文献中也会看到研究者为了更加契合各经济体之间经济空间联系,所构建的更加复杂的权重矩阵,在知道基本原理以后,就可以根据实际需要去构建自己需要的矩阵啦。

  • 接下来,本文主要对空间计量的后续一系列操作进行简单的讲解,以期为大家做好流程梳理,使大家能够明白每一步在整个空间计量中所起到的作用。流程图可参考下图,也可根据推荐的视频进行学习。
    推荐视频
    流程图
1.计算莫兰指数画莫兰图
  • 该步骤主要是通过莫兰指数以及图像进行判断各变量是否存在空间相关性,我们在选用一个模型之前,首先应该判断我们研究的问题是否具有空间相关关系,每一个变量(特别是核心解释变量和被解释变量)是否具有空间相关性,常用的判断方法就是计算莫兰指数和画莫兰散点图。
    (本文以作者研究中所用的一部分数据进行演示,权重矩阵以0-1矩阵为例。)
  • 首先调入0-1矩阵
cap log c
clear all
use w0110.dta,clear
keep s*
save "weight1.dta",replace
spatwmat using weight1,name(W) standardize   / / 矩阵标准化
  • 调入研究的数据
use 3.25panel.dta, clear
keep if year==2003  
  • 此处需要特别注意的是,stata在计算莫兰指数以及画莫兰散点图时,只能一年一年的进行,为此,需要连续操作多次。
spatgsa indh ,weights(W) moran
spatgsa indh ind32  indr indr2   ai1  ,weights(W) moran    
 / / moran值只能一年一年测算,因此需要重复每一年的命令
  • 结果显示如下:
Name: W
Type: Imported (binary)
Row-standardized: Yes
--------------------------------------------------------------
Moran's I
--------------------------------------------------------------
          Variables |    I      E(I)   sd(I)     z    p-value*
--------------------+-----------------------------------------
               indh |  0.156  -0.034   0.057   3.335   0.000
              ind32 | -0.015  -0.034   0.053   0.372   0.355
               indr |  0.101  -0.034   0.055   2.469   0.007
              indr2 |  0.158  -0.034   0.058   3.347   0.000
                ai1 |  0.128  -0.034   0.057   2.872   0.002
--------------------------------------------------------------
spatlsa indh    ,weights(W) moran  graph(moran)  symbol(n)  / /计算LISA并画出莫兰散点图(只能一次画一个变量)

indh莫兰散点图1
  • 此时个体是以数字进行表示,如果个体加上对应的标签,命令需进行如下修改
spatlsa indh ,weights(W) moran  graph(moran)  symbol(id) id(name)  / /莫兰散点图可以标注出地名
  • 结果呈现:


    indh莫兰散点图2

以上是针对莫兰指数以及莫兰散点图操作的讲解,具体分析,可参考文献(张万里等(2020)产业智能化对产业结构升级的空间溢出效应——劳动力结构和收入分配不平等的调节作用)

2.模型检验
2.1 LM检验
  • 本检验的目的就是判断各变量是否具有空间分布属性,模型是否有必要用空间计量模型,该检验是与混合OLS对比。
reg  indh  lnai1   lnhum  lnurb  lnpgdp  lnopen  lnstr  lnfdi
spatdiag, weights(w2b)
  • 结果呈现:
    Source |       SS           df       MS      Number of obs   =       480
-------------+----------------------------------   F(7, 472)       =    319.57
       Model |  167.343496         7  23.9062138   Prob > F        =    0.0000
    Residual |  35.3088068       472  .074806794   R-squared       =    0.8258
-------------+----------------------------------   Adj R-squared   =    0.8232
       Total |  202.652303       479  .423073702   Root MSE        =    .27351

------------------------------------------------------------------------------
        indh |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       lnai1 |   .0782969   .0207407     3.78   0.000     .0375413    .1190524
       lnhum |   1.548572   .2224006     6.96   0.000     1.111554    1.985589
       lnurb |   -.349849   .1468257    -2.38   0.018     -.638362   -.0613361
      lnpgdp |   .7436782    .040243    18.48   0.000     .6646006    .8227558
      lnopen |  -.0631071   .0183946    -3.43   0.001    -.0992524   -.0269617
       lnstr |  -.0562492   .0206882    -2.72   0.007    -.0969017   -.0155968
       lnfdi |  -.0562877   .0153621    -3.66   0.000    -.0864742   -.0261012
       _cons |  -9.563391   .6191849   -15.45   0.000    -10.78009   -8.346691
------------------------------------------------------------------------------
. spatdiag, weights(w2b)
Diagnostic tests for spatial dependence in OLS regression
Fitted model
------------------------------------------------------------
indh = lnai1 + lnhum + lnurb + lnpgdp + lnopen + lnstr + lnfdi
------------------------------------------------------------
Weights matrix
------------------------------------------------------------
Name: w2b
Type: Distance-based (inverse distance)
Distance band: c1.c2 < d <= c3.c4
Row-standardized: No
------------------------------------------------------------
Diagnostics
------------------------------------------------------------
Test                           |  Statistic    df   p-value
-------------------------------+----------------------------
Spatial error:                 |
  Moran's I                    |     1.743      1    0.081
  Lagrange multiplier          |   240.883      1    0.000
  Robust Lagrange multiplier   |   226.944      1    0.000
                               |
Spatial lag:                   |
  Lagrange multiplier          |    14.632      1    0.000
  Robust Lagrange multiplier   |     0.693      1    0.405
------------------------------------------------------------

  • 此时需要通过Spatial error和Spatial lag进行判断,其原假设分别是误差项不存在空间相关性,滞后项不存在空间相关性,通过对应的p值,可以看出是拒绝原假设的,说明误差项和滞后项均存在空间相关性的。
2.2 Hausman检验
  • 该检验的目的是为了判断模型是采用固定效应还是随机效应,注意:此时的命令与非空间计量的操作不一样。
xsmle indh  lnai1   lnhum  lnurb  lnpgdp lnopen  lnstr  lnfdi,model(sdm)  ///
wmat(w2b) hausman nolog                               
  • 结果呈现:
Warning: All regressors will be spatially lagged 
estimating fixed-effects model to perform Hausman test

SDM with random-effects                              Number of obs =       480

Group variable: id                                Number of groups =        30
Time variable: year                                   Panel length =        16

R-sq:    within  = 0.8950
         between = 0.0004
         overall = 0.5128

Log-likelihood =   114.2447
------------------------------------------------------------------------------
        indh |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Main         |
       lnai1 |   .0141394   .0172924     0.82   0.414     -.019753    .0480318
       lnhum |   .5715857   .3544807     1.61   0.107    -.1231838    1.266355
       lnurb |  -2.304039   .1963603   -11.73   0.000    -2.688898    -1.91918
      lnpgdp |   1.036132   .0713559    14.52   0.000     .8962768    1.175987
      lnopen |  -.0362019   .0305358    -1.19   0.236     -.096051    .0236473
       lnstr |  -.0095572   .0612648    -0.16   0.876    -.1296339    .1105196
       lnfdi |   .0069282   .0163646     0.42   0.672    -.0251458    .0390021
       _cons |   -12.0415   1.064581   -11.31   0.000    -14.12804   -9.954956
-------------+----------------------------------------------------------------
Wx           |
       lnai1 |   .0101005   .0303298     0.33   0.739    -.0493448    .0695457
       lnhum |   .3715369   .5259231     0.71   0.480    -.6592534    1.402327
       lnurb |   .7866186   .3070776     2.56   0.010     .1847576     1.38848
      lnpgdp |  -.6691565   .0863862    -7.75   0.000    -.8384704   -.4998426
      lnopen |  -.0427657   .0811575    -0.53   0.598    -.2018316    .1163001
       lnstr |   .8479178   .1382939     6.13   0.000     .5768666    1.118969
       lnfdi |    .197277   .0740422     2.66   0.008      .052157    .3423969
-------------+----------------------------------------------------------------
Spatial      |
         rho |   .4981421   .0610269     8.16   0.000     .3785316    .6177525
-------------+----------------------------------------------------------------
Variance     |
   lgt_theta |  -2.231347   .2005747   -11.12   0.000    -2.624466   -1.838228
    sigma2_e |   .0265422   .0018263    14.53   0.000     .0229628    .0301216
------------------------------------------------------------------------------
Ho: difference in coeffs not systematic chi2(15) = 25.20   Prob>=chi2 = 0.0474
------------------------------------------------------------------------------
  • 由最终系数判断,拒绝原假设,也即个体系数之间是存在显著的差异的,最终选择固定效应模型进行后续操作。
3. LR+Wald检验

这两个检验是在通过LM检验已经确定变量之间存在空间相关性,可以利用空间计量模型进行后续操作的基础上,去进一步判断空间计量模型具体采用哪个。其思想均是假设模型是空间杜宾模型(SDM),看看能否进一步退化为空间误差模型(SEM)或者空间自相关模型(SAR),如果能够退化,那么采用更具针对性的退化后的模型,若不能退化,那么就采用包容性更强的SDM模型。

3.1 LR检验
xsmle indh  lnai1   lnhum    lnpgdp lnopen  lnstr  lnfdi  ,wmat(w2b) model(sdm) ///
fe  type(ind)   nsim(500) nolog effects    //effects(偏微分分解)
est store sdm_a
xsmle indh  lnai1   lnhum  lnurb  lnpgdp lnopen  lnstr  lnfdi  ,wmat(w2b) model(sar) ///
fe  type(ind)   nsim(500) nolog effects    //effects(偏微分分解)
est store sar_a
xsmle indh  lnai1   lnhum  lnurb  lnpgdp lnopen  lnstr  lnfdi  ,emat(w2b) model(sem) ///
 fe  type(ind)  nsim(500) nolog effects    //effects(偏微分分解)
est store sem_a

lrtest sdm_a sar_a     / /比较sdm与sar模型     
lrtest sdm_a sem_a    / /比较sdm与sem模型
  • 结果显示:
lrtest sdm_a sar_a //比较sdm与sar模型     
Likelihood-ratio test                                 LR chi2(5)  =    -90.40
(Assumption: sar_a nested in sdm_a)    Prob > chi2 =    1.0000

lrtest sdm_a sem_a //比较sdm与sem模型
Likelihood-ratio test                                LR chi2(5)  =  -134.85
(Assumption: sem_a nested in sdm_a)  Prob > chi2 = 1.0000

说明:LR的原假设是sdm模型能够退化成sar模型和sem模型,本文的检测结果由P值可知,是接受原假设的,也即应该采用退化后的结果。
(本数据仅仅为了演示,具体情况要具体分析)

3.2 Wald检验

注意:为方便后续演示,Wald检验被解释变量替换成indr

xsmle indr  lnai1   lnhum  lnurb  lnpgdp lnopen  lnstr  lnfdi  ,wmat(w2b) model(sdm) ///
fe  type(both)  nsim(500) nolog effects    / /effects(偏微分分解)

test[Wx]lnai1=[Wx]lnhum=[Wx]lnurb=[Wx]lnpgdp=[Wx]lnopen=[Wx]lnstr=[Wx]lnfdi=0  //比较sdm与sar模型
  • 结果显示1:
 ( 1)  [Wx]lnai1 - [Wx]lnhum = 0
 ( 2)  [Wx]lnai1 - [Wx]lnurb = 0
 ( 3)  [Wx]lnai1 - [Wx]lnpgdp = 0
 ( 4)  [Wx]lnai1 - [Wx]lnopen = 0
 ( 5)  [Wx]lnai1 - [Wx]lnstr = 0
 ( 6)  [Wx]lnai1 - [Wx]lnfdi = 0
 ( 7)  [Wx]lnai1 = 0

           chi2(  7) =  105.36
         Prob > chi2 =    0.0000     / /此时可以发现拒绝原假设

**[Wx]后面跟变量表示该变量的空间滞后项,[Wx]lnai1表示lnai1的空间滞后项
testnl([Wx]lnai1=-[Spatial]rho*[Main]lnai1) ([Wx]lnhum=-[Spatial]rho*[Main]lnhum) ///
      ([Wx]lnurb=-[Spatial]rho*[Main]lnurb) ([Wx]lnpgdp=-[Spatial]rho*[Main]lnpgdp) ///
      ([Wx]lnopen=-[Spatial]rho*[Main]lnopen) ([Wx]lnstr=-[Spatial]rho*[Main]lnstr) ///
      ([Wx]lnfdi=-[Spatial]rho*[Main]lnfdi)        / /比较sdm与sem模型
  • 结果显示2
 (1)  [Wx]lnai1 = -[Spatial]rho*[Main]lnai1
  (2)  [Wx]lnhum = -[Spatial]rho*[Main]lnhum
  (3)  [Wx]lnurb = -[Spatial]rho*[Main]lnurb
  (4)  [Wx]lnpgdp = -[Spatial]rho*[Main]lnpgdp
  (5)  [Wx]lnopen = -[Spatial]rho*[Main]lnopen
  (6)  [Wx]lnstr = -[Spatial]rho*[Main]lnstr
  (7)  [Wx]lnfdi = -[Spatial]rho*[Main]lnfdi

               chi2(7) =      119.50
           Prob > chi2 =        0.0000     / /此时拒绝原假设
  • 此时,我们可以发现,Wald检验结果比较一致,也即SDM不能退化成SEM或者SAR,因此,最终模型选择SDM模型进行后续模型的回归。
4. SDM模型回归

通过上述各种检验,最终确定模型选择空间计量模型进行回归,对于固定效应模型,空间计量中也存在对应三种形式:时间固定、个体固定、个体时间双固定,在命令中通过对应选项进行设定。

4.1 时间固定
. xsmle indh  lnai1       lnurb  lnpgdp lnopen  lnstr  lnfdi  ,wmat(w2b) model(sdm) ///
 fe  type(time) nsim(500) nolog   
Warning: All regressors will be spatially lagged 

convergence not achieved

SDM with time fixed-effects                          Number of obs =       480

Group variable: id                                Number of groups =        30
Time variable: year                                   Panel length =        16

R-sq:    within  = 0.8218
         between = 0.1327
         overall = 0.4361

Mean of fixed-effects = -8.6828

Log-likelihood =   -27.3910
------------------------------------------------------------------------------
        indh |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Main         |
       lnai1 |   .0647171   .0234792     2.76   0.006     .0186986    .1107355
       lnurb |  -.0078166   .1606611    -0.05   0.961    -.3227067    .3070734
      lnpgdp |   .9957974   .0801324    12.43   0.000     .8387408    1.152854
      lnopen |  -.1451156   .0249105    -5.83   0.000    -.1939393   -.0962919
       lnstr |  -.0361917   .0228758    -1.58   0.114    -.0810275     .008644
       lnfdi |  -.0114885   .0176561    -0.65   0.515    -.0460937    .0231168
-------------+----------------------------------------------------------------
Wx           |
       lnai1 |   .1966633   .0903494     2.18   0.030     .0195817    .3737448
       lnurb |  -.8798602   .2550649    -3.45   0.001    -1.379778   -.3799423
      lnpgdp |  -.1560619    .076158    -2.05   0.040    -.3053287    -.006795
      lnopen |  -.1927672   .0980735    -1.97   0.049    -.3849876   -.0005467
       lnstr |   .3537218    .092058     3.84   0.000     .1732913    .5341522
       lnfdi |   .3702656   .0781735     4.74   0.000     .2170484    .5234828
-------------+----------------------------------------------------------------
Spatial      |
         rho |   .2594026          .        .       .            .           .
-------------+----------------------------------------------------------------
Variance     |
    sigma2_e |   .0647799   .0041508    15.61   0.000     .0566444    .0729154
------------------------------------------------------------------------------

. estat ic     / /AIC  BIC  test

Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |        Obs  ll(null)  ll(model)      df         AIC        BIC
-------------+---------------------------------------------------------------
           . |        480         .  -27.39105      13     80.7821   135.0413
-----------------------------------------------------------------------------
               Note: N=Obs used in calculating BIC; see [R] BIC note.

. est store M_1
4.2 个体固定
. xsmle indh  lnai1       lnurb  lnpgdp lnopen  lnstr  lnfdi  ,wmat(w2b) model(sdm) ///
 fe  type(ind)  nsim(500) nolog  
Warning: All regressors will be spatially lagged 


SDM with spatial fixed-effects                       Number of obs =       480

Group variable: id                                Number of groups =        30
Time variable: year                                   Panel length =        16

R-sq:    within  = 0.8956
         between = 0.0772
         overall = 0.0875

Mean of fixed-effects = -6.6100

Log-likelihood =   206.7967
------------------------------------------------------------------------------
        indh |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Main         |
       lnai1 |   .0032059   .0163587     0.20   0.845    -.0288566    .0352684
       lnurb |  -2.575745   .1834151   -14.04   0.000    -2.935232   -2.216258
      lnpgdp |   1.038779    .068828    15.09   0.000     .9038787    1.173679
      lnopen |  -.0688752   .0291643    -2.36   0.018    -.1260361   -.0117143
       lnstr |   .1202283   .0601734     2.00   0.046     .0022906     .238166
       lnfdi |   .0178616   .0156416     1.14   0.253    -.0127954    .0485185
-------------+----------------------------------------------------------------
Wx           |
       lnai1 |   .0088397   .0277297     0.32   0.750    -.0455096    .0631889
       lnurb |   2.015259   .4894426     4.12   0.000     1.055969    2.974548
      lnpgdp |  -.7986693   .1039317    -7.68   0.000    -1.002372    -.594967
      lnopen |  -.0706365   .0795821    -0.89   0.375    -.2266145    .0853415
       lnstr |    .493464   .1816466     2.72   0.007     .1374433    .8494848
       lnfdi |   .2208083   .0723264     3.05   0.002     .0790511    .3625656
-------------+----------------------------------------------------------------
Spatial      |
         rho |   .6025657   .0638191     9.44   0.000     .4774827    .7276488
-------------+----------------------------------------------------------------
Variance     |
    sigma2_e |   .0238286   .0015567    15.31   0.000     .0207775    .0268797
------------------------------------------------------------------------------

. estat ic   / /AIC  BIC test

Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |        Obs  ll(null)  ll(model)      df         AIC        BIC
-------------+---------------------------------------------------------------
           . |        480         .   206.7967      14   -385.5934  -327.1604
-----------------------------------------------------------------------------
               Note: N=Obs used in calculating BIC; see [R] BIC note.

. est store M_2
4.3 个体时间双固定
. xsmle indh  lnai1       lnurb  lnpgdp lnopen  lnstr  lnfdi  ,wmat(w2b) model(sdm) ///
fe  type(both) nsim(500) nolog effects  
Warning: All regressors will be spatially lagged 

convergence not achieved
Computing marginal effects standard errors using MC simulation...

SDM with spatial and time fixed-effects              Number of obs =       480

Group variable: id                                Number of groups =        30
Time variable: year                                   Panel length =        16

R-sq:    within  = 0.8446
         between = 0.0229
         overall = 0.0433

Mean of fixed-effects = -4.1053

Log-likelihood =   231.7637
------------------------------------------------------------------------------
        indh |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Main         |
       lnai1 |   .0195483   .0166901     1.17   0.241    -.0131637    .0522603
       lnurb |   -2.64566    .181635   -14.57   0.000    -3.001658   -2.289662
      lnpgdp |   .8247339   .0816866    10.10   0.000     .6646311    .9848366
      lnopen |  -.0730921   .0308264    -2.37   0.018    -.1335106   -.0126735
       lnstr |   .0152735   .0644112     0.24   0.813    -.1109702    .1415171
       lnfdi |   .0371711   .0160669     2.31   0.021     .0056804    .0686617
-------------+----------------------------------------------------------------
Wx           |
       lnai1 |    .123214   .0634018     1.94   0.052    -.0010513    .2474793
       lnurb |   2.293344   .5723017     4.01   0.000     1.171653    3.415034
      lnpgdp |  -.5517104   .1647168    -3.35   0.001    -.8745493   -.2288715
      lnopen |  -.2323947    .151855    -1.53   0.126    -.5300251    .0652356
       lnstr |   .4248028   .2585176     1.64   0.100    -.0818825    .9314881
       lnfdi |   .3483528   .0834773     4.17   0.000     .1847404    .5119653
-------------+----------------------------------------------------------------
Spatial      |
         rho |         .3   .1503035     2.00   0.046     .0054105    .5945895
-------------+----------------------------------------------------------------
Variance     |
    sigma2_e |   .0225831    .001499    15.07   0.000     .0196452     .025521
-------------+----------------------------------------------------------------
LR_Direct    |
       lnai1 |   .0237485   .0174309     1.36   0.173    -.0104154    .0579125
       lnurb |  -2.613857    .176801   -14.78   0.000    -2.960381   -2.267333
      lnpgdp |   .8259336   .0798606    10.34   0.000     .6694097    .9824574
      lnopen |   -.078957   .0315847    -2.50   0.012    -.1408619   -.0170521
       lnstr |   .0260854   .0646428     0.40   0.687    -.1006121    .1527829
       lnfdi |   .0478904   .0173831     2.75   0.006     .0138202    .0819607
-------------+----------------------------------------------------------------
LR_Indirect  |
       lnai1 |   .1790068   .0958373     1.87   0.062    -.0088309    .3668445
       lnurb |   2.043289   .7305513     2.80   0.005      .611435    3.475143
      lnpgdp |  -.4040708   .2032038    -1.99   0.047    -.8023428   -.0057987
      lnopen |   -.331528   .2026713    -1.64   0.102    -.7287564    .0657005
       lnstr |   .5663275   .3772711     1.50   0.133    -.1731102    1.305765
       lnfdi |   .5024553   .1476957     3.40   0.001     .2129772    .7919335
-------------+----------------------------------------------------------------
LR_Total     |
       lnai1 |   .2027553   .1014327     2.00   0.046     .0039508    .4015598
       lnurb |   -.570568   .7393432    -0.77   0.440    -2.019654    .8785182
      lnpgdp |   .4218628   .2312038     1.82   0.068    -.0312883    .8750139
      lnopen |   -.410485   .2166001    -1.90   0.058    -.8350134    .0140435
       lnstr |   .5924129   .4040514     1.47   0.143    -.1995133    1.384339
       lnfdi |   .5503457   .1560449     3.53   0.000     .2445034    .8561881
------------------------------------------------------------------------------

. estat ic    / /AIC  BIC  test

Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
       Model |        Obs  ll(null)  ll(model)      df         AIC        BIC
-------------+---------------------------------------------------------------
           . |        480         .   231.7637      14   -435.5273  -377.0943
-----------------------------------------------------------------------------
               Note: N=Obs used in calculating BIC; see [R] BIC note.

. est store M_3
  • 三个模型结果汇总:
 local m "M_1  M_2  M_3"  
 esttab `m', mtitle(`m') nogap s(r2 ll aic bic N) ///
 star(*  0.1  **  0.05  ***  0.01)  b(%6.3f)

------------------------------------------------------------
                      (1)             (2)             (3)   
                      M_1             M_2             M_3   
------------------------------------------------------------
Main                                                        
lnai1               0.065***        0.003           0.020   
                   (2.76)          (0.20)          (1.17)   
lnurb              -0.008          -2.576***       -2.646***
                  (-0.05)        (-14.04)        (-14.57)   
lnpgdp              0.996***        1.039***        0.825***
                  (12.43)         (15.09)         (10.10)   
lnopen             -0.145***       -0.069**        -0.073** 
                  (-5.83)         (-2.36)         (-2.37)   
lnstr              -0.036           0.120**         0.015   
                  (-1.58)          (2.00)          (0.24)   
lnfdi              -0.011           0.018           0.037** 
                  (-0.65)          (1.14)          (2.31)   
------------------------------------------------------------
Wx                                                          
lnai1               0.197**         0.009           0.123*  
                   (2.18)          (0.32)          (1.94)   
lnurb              -0.880***        2.015***        2.293***
                  (-3.45)          (4.12)          (4.01)   
lnpgdp             -0.156**        -0.799***       -0.552***
                  (-2.05)         (-7.68)         (-3.35)   
lnopen             -0.193**        -0.071          -0.232   
                  (-1.97)         (-0.89)         (-1.53)   
lnstr               0.354***        0.493***        0.425   
                   (3.84)          (2.72)          (1.64)   
lnfdi               0.370***        0.221***        0.348***
                   (4.74)          (3.05)          (4.17)   
------------------------------------------------------------
Spatial                                                     
rho                 0.259           0.603***        0.300** 
                      (.)          (9.44)          (2.00)   
------------------------------------------------------------
Variance                                                    
sigma2_e            0.065***        0.024***        0.023***
                  (15.61)         (15.31)         (15.07)   
------------------------------------------------------------
r2                  0.436           0.088           0.043   
ll                -27.391         206.797         231.764   
aic                80.782        -385.593        -435.527   
bic               135.041        -327.160        -377.094   
N                 480.000         480.000         480.000   
------------------------------------------------------------
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
  • 注意:具体结果的解读,请参考相关文献,此处不再赘述。
5. 进一步延伸——动态空间计量模型
spregdhp indh  lnai1   lnhum  lnurb  lnpgdp lnopen  lnstr  lnfdi,nc(30) /// model(sdm) wmfile(weight1.dta) mfx(lin) fe  test
  • 具体结果呈现:
*** Spatial Weight Matrix Has (1) Location with No Neighbors
==============================================================================
*** Binary (0/1) Weight Matrix: 480x480 - NC=30 NT=16 (Non Normalized)
==============================================================================
==============================================================================
* Spatial Durbin Han-Philips Linear Dynamic Panel Data Regression
==============================================================================
  indh = lnai1 + lnhum + lnurb + lnpgdp + lnopen + lnstr + lnfdi + w1x_lnai1 + w1x_lnhum + w1x_lnurb +
       w1x_lnpgdp + w1x_lnopen + w1x_lnstr + w1x_lnfdi
------------------------------------------------------------------------------
  Sample Size       =         450   |   Cross Sections Number   =          30
  Wald Test         =   1424.2048   |   P-Value > Chi2(15)      =      0.0000
  F-Test            =     94.9470   |   P-Value > F(15 , 435)   =      0.0000
 (Buse 1973) R2     =      0.7660   |   Raw Moments R2          =      0.7990
 (Buse 1973) R2 Adj =      0.7585   |   Raw Moments R2 Adj      =      0.7925
  Root MSE (Sigma)  =     17.3047   |   Log Likelihood Function =   -418.0409
------------------------------------------------------------------------------
- R2h= 0.7180   R2h Adj= 0.7089  F-Test =   73.67 P-Value > F(15 , 435)0.0000
------------------------------------------------------------------------------
        indh |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        indh |
         L1. |   1.464642   .1391751    10.52   0.000     1.191864     1.73742
             |
       lnai1 |  -.0021971   .0116581    -0.19   0.851    -.0250466    .0206523
       lnhum |   .1956269   .2028405     0.96   0.335    -.2019332    .5931869
       lnurb |  -1.344261   .2254866    -5.96   0.000    -1.786207   -.9023154
      lnpgdp |   .7709002   .0570397    13.52   0.000     .6591043     .882696
      lnopen |  -.0811523   .0277325    -2.93   0.003     -.135507   -.0267976
       lnstr |   .0774429   .0416614     1.86   0.063    -.0042119    .1590978
       lnfdi |  -.0362189   .0146448    -2.47   0.013    -.0649221   -.0075157
   w1x_lnai1 |  -.0028346   .0011974    -2.37   0.018    -.0051816   -.0004877
   w1x_lnhum |   .0135636   .0201096     0.67   0.500    -.0258505    .0529778
   w1x_lnurb |   .0433338   .0591794     0.73   0.464    -.0726556    .1593233
  w1x_lnpgdp |  -.0082215   .0103883    -0.79   0.429    -.0285822    .0121393
  w1x_lnopen |    .002222    .003673     0.60   0.545     -.004977    .0094209
   w1x_lnstr |   .0199601   .0103436     1.93   0.054    -.0003129    .0402332
   w1x_lnfdi |  -.0066894   .0049708    -1.35   0.178    -.0164319    .0030531
       _cons |   4.894664   1.179578     4.15   0.000     2.582734    7.206594
------------------------------------------------------------------------------

==============================================================================
* Panel Model Selection Diagnostic Criteria
==============================================================================
- Log Likelihood Function                   LLF            =   -418.0409
---------------------------------------------------------------------------
- Akaike Information Criterion              (1974) AIC     =      0.4084
- Akaike Information Criterion              (1973) Log AIC =     -0.8955
---------------------------------------------------------------------------
- Schwarz Criterion                         (1978) SC      =      0.4858
- Schwarz Criterion                         (1978) Log SC  =     -0.7220
---------------------------------------------------------------------------
- Amemiya Prediction Criterion              (1969) FPE     =      0.4047
- Hannan-Quinn Criterion                    (1979) HQ      =      0.4373
- Rice Criterion                            (1984) Rice    =      0.4100
- Shibata Criterion                         (1981) Shibata =      0.4070
- Craven-Wahba Generalized Cross Validation (1979) GCV     =      0.4092
------------------------------------------------------------------------------

==============================================================================
*** Spatial Panel Aautocorrelation Tests
==============================================================================
  Ho: Error has No Spatial AutoCorrelation
  Ha: Error has    Spatial AutoCorrelation

- GLOBAL Moran MI            =   0.9548     P-Value > Z(53.714)   0.0000
- GLOBAL Geary GC            =   0.0725     P-Value > Z(-35.873)  0.0000
- GLOBAL Getis-Ords GO       = -12.8576     P-Value > Z(-53.714)  0.0000
------------------------------------------------------------------------------
- Moran MI Error Test        =   5.0236     P-Value > Z(282.089)  0.0000
------------------------------------------------------------------------------
- LM Error (Burridge)        =2581.0442     P-Value > Chi2(1)     0.0000
- LM Error (Robust)          = 1.84e+04     P-Value > Chi2(1)     0.0000
------------------------------------------------------------------------------
  Ho: Spatial Lagged Dependent Variable has No Spatial AutoCorrelation
  Ha: Spatial Lagged Dependent Variable has    Spatial AutoCorrelation

- LM Lag (Anselin)           =1101.7864     P-Value > Chi2(1)     0.0000
- LM Lag (Robust)            = 1.69e+04     P-Value > Chi2(1)     0.0000
------------------------------------------------------------------------------
  Ho: No General Spatial AutoCorrelation
  Ha:    General Spatial AutoCorrelation

- LM SAC (LMErr+LMLag_R)     = 1.95e+04     P-Value > Chi2(2)     0.0000
- LM SAC (LMLag+LMErr_R)     = 1.95e+04     P-Value > Chi2(2)     0.0000
------------------------------------------------------------------------------

==============================================================================
*** Panel Heteroscedasticity Tests
==============================================================================
  Ho: Panel Homoscedasticity - Ha: Panel Heteroscedasticity

- Engle LM ARCH Test AR(1): E2 = E2_1   = 227.9877   P-Value > Chi2(1)  0.0000
------------------------------------------------------------------------------
- Hall-Pagan LM Test:   E2 = Yh         =   1.0343   P-Value > Chi2(1)  0.3091
- Hall-Pagan LM Test:   E2 = Yh2        =   2.2574   P-Value > Chi2(1)  0.1330
- Hall-Pagan LM Test:   E2 = LYh2       =   0.2879   P-Value > Chi2(1)  0.5916
------------------------------------------------------------------------------
- Harvey LM Test:    LogE2 = X          = 148.8733   P-Value > Chi2(2)  0.0000
- Wald Test:         LogE2 = X          = 367.3299   P-Value > Chi2(1)  0.0000
- Glejser LM Test:     |E| = X          = 164.3446   P-Value > Chi2(2)  0.0000
- Breusch-Godfrey Test:  E = E_1 X      = 285.9815   P-Value > Chi2(1)  0.0000
------------------------------------------------------------------------------
- White Test - Koenker(R2): E2 = X      = 231.0490   P-Value > Chi2(14) 0.0000
- White Test - B-P-G (SSR): E2 = X      = 103.4140   P-Value > Chi2(14) 0.0000
------------------------------------------------------------------------------
- White Test - Koenker(R2): E2 = X X2   = 279.4980   P-Value > Chi2(28) 0.0000
- White Test - B-P-G (SSR): E2 = X X2   = 125.0990   P-Value > Chi2(28) 0.0000
------------------------------------------------------------------------------
- White Test - Koenker(R2): E2 = X X2 XX= 377.1644   P-Value > Chi2(119)0.0000
- White Test - B-P-G (SSR): E2 = X X2 XX= 168.8130   P-Value > Chi2(119)0.0018
------------------------------------------------------------------------------
- Cook-Weisberg LM Test: E2/S2n = Yh    =   0.4629   P-Value > Chi2(1)  0.4962
- Cook-Weisberg LM Test: E2/S2n = X     = 103.4140   P-Value > Chi2(14) 0.0000
------------------------------------------------------------------------------
*** Single Variable Tests (E2/Sig2):
- Cook-Weisberg LM Test: lnai1             =  17.3032 P-Value > Chi2(1) 0.0000
- Cook-Weisberg LM Test: lnhum             =   1.0716 P-Value > Chi2(1) 0.3006
- Cook-Weisberg LM Test: lnurb             =   3.0495 P-Value > Chi2(1) 0.0808
- Cook-Weisberg LM Test: lnpgdp            =   0.6924 P-Value > Chi2(1) 0.4054
- Cook-Weisberg LM Test: lnopen            =   0.5348 P-Value > Chi2(1) 0.4646
- Cook-Weisberg LM Test: lnstr             =   1.8047 P-Value > Chi2(1) 0.1791
- Cook-Weisberg LM Test: lnfdi             =   1.4470 P-Value > Chi2(1) 0.2290
- Cook-Weisberg LM Test: w1x_lnai1         =   0.0080 P-Value > Chi2(1) 0.9287
- Cook-Weisberg LM Test: w1x_lnhum         =   0.7712 P-Value > Chi2(1) 0.3799
- Cook-Weisberg LM Test: w1x_lnurb         =   2.6665 P-Value > Chi2(1) 0.1025
- Cook-Weisberg LM Test: w1x_lnpgdp        =   0.3460 P-Value > Chi2(1) 0.5564
- Cook-Weisberg LM Test: w1x_lnopen        =   0.3767 P-Value > Chi2(1) 0.5394
- Cook-Weisberg LM Test: w1x_lnstr         =   1.0104 P-Value > Chi2(1) 0.3148
- Cook-Weisberg LM Test: w1x_lnfdi         =   1.3242 P-Value > Chi2(1) 0.2498
------------------------------------------------------------------------------
*** Single Variable Tests:
- King LM Test: lnai1                      =  17.1618 P-Value > Chi2(1) 0.0000
- King LM Test: lnhum                      =   0.6876 P-Value > Chi2(1) 0.4070
- King LM Test: lnurb                      =   3.4760 P-Value > Chi2(1) 0.0623
- King LM Test: lnpgdp                     =   0.0600 P-Value > Chi2(1) 0.8065
- King LM Test: lnopen                     =   0.5522 P-Value > Chi2(1) 0.4574
- King LM Test: lnstr                      =   1.2860 P-Value > Chi2(1) 0.2568
- King LM Test: lnfdi                      =   1.9319 P-Value > Chi2(1) 0.1646
- King LM Test: w1x_lnai1                  =   0.7515 P-Value > Chi2(1) 0.3860
- King LM Test: w1x_lnhum                  =   0.2341 P-Value > Chi2(1) 0.6285
- King LM Test: w1x_lnurb                  =   1.8259 P-Value > Chi2(1) 0.1766
- King LM Test: w1x_lnpgdp                 =   0.0118 P-Value > Chi2(1) 0.9137
- King LM Test: w1x_lnopen                 =   0.0828 P-Value > Chi2(1) 0.7736
- King LM Test: w1x_lnstr                  =   0.3801 P-Value > Chi2(1) 0.5375
- King LM Test: w1x_lnfdi                  =   0.9717 P-Value > Chi2(1) 0.3243
------------------------------------------------------------------------------

==============================================================================
* Panel Non Normality Tests
==============================================================================
 Ho: Normality - Ha: Non Normality
------------------------------------------------------------------------------
*** Non Normality Tests:
- Jarque-Bera LM Test                  =  24.0873     P-Value > Chi2(2) 0.0000
- White IM Test                        =  64.5926     P-Value > Chi2(2) 0.0000
- Doornik-Hansen LM Test               =  41.2587     P-Value > Chi2(2) 0.0000
- Geary LM Test                        = -15.4752     P-Value > Chi2(2) 0.0004
- Anderson-Darling Z Test              =   6.3697     P > Z( 7.675)     1.0000
- D'Agostino-Pearson LM Test           = 154.7377     P-Value > Chi2(2) 0.0000
------------------------------------------------------------------------------
*** Skewness Tests:
- Srivastava LM Skewness Test          =   1.2001     P-Value > Chi2(1) 0.2733
- Small LM Skewness Test               =   1.2296     P-Value > Chi2(1) 0.2675
- Skewness Z Test                      =   1.1089     P-Value > Chi2(1) 0.2675
------------------------------------------------------------------------------
*** Kurtosis Tests:
- Srivastava  Z Kurtosis Test          =  -4.7841     P-Value > Z(0,1)  0.0000
- Small LM Kurtosis Test               = 153.5081     P-Value > Chi2(1) 0.0000
- Kurtosis Z Test                      = -12.3898     P-Value > Chi2(1) 0.0000
------------------------------------------------------------------------------
    Skewness Coefficient =  0.1265     - Standard Deviation =  0.1151
    Kurtosis Coefficient =  1.8952     - Standard Deviation =  0.2297
------------------------------------------------------------------------------
    Runs Test: (62) Runs -  (219) Positives - (231) Negatives
    Standard Deviation Runs Sig(k) = 10.5872 , Mean Runs E(k) = 225.8400
    95% Conf. Interval [E(k)+/- 1.96* Sig(k)] = (205.0890 , 246.5910 )
------------------------------------------------------------------------------

* Marginal Effect - Elasticity (Model= sdm): Linear *

+---------------------------------------------------------------------------+
|   Variable | Marginal_Effect(B) |     Elasticity(Es) |               Mean |
|------------+--------------------+--------------------+--------------------|
|     L.indh |             1.4646 |             1.4595 |             1.1544 |
|      lnai1 |            -0.0022 |             0.0095 |            -5.0094 |
|      lnhum |             0.1956 |             0.3640 |             2.1555 |
|      lnurb |            -1.3443 |             0.7928 |            -0.6832 |
|     lnpgdp |             0.7709 |             6.8374 |            10.2747 |
|     lnopen |            -0.0812 |             0.1180 |            -1.6839 |
|      lnstr |             0.0774 |             0.5248 |             7.8498 |
|      lnfdi |            -0.0362 |             0.1285 |            -4.1089 |
|  w1x_lnai1 |            -0.0028 |             0.1678 |           -68.5763 |
|  w1x_lnhum |             0.0136 |             0.3409 |            29.1117 |
|  w1x_lnurb |             0.0433 |            -0.3401 |            -9.0909 |
| w1x_lnpgdp |            -0.0082 |            -0.9849 |           138.7821 |
| w1x_lnopen |             0.0022 |            -0.0427 |           -22.2636 |
|  w1x_lnstr |             0.0200 |             1.8222 |           105.7570 |
|  w1x_lnfdi |            -0.0067 |             0.3079 |           -53.3221 |
+---------------------------------------------------------------------------+
 Mean of Dependent Variable =      1.1584
  • 具体解释,请参考:刘成坤(2019)人口老龄化对产业结构升级的溢出效应研究——基于空间动态杜宾模型;李婧等(2010)中国区域创新生产的空间计量分析——基于静态与动态空间面板模型的实证研究.

你可能感兴趣的:(学习笔记——空间计量(其二 详细版))