- The power of perseverance turns dreams into reality, one step at a time.
Vic10101
英语学习人工智能
文章内容:Title:TheStrengthofPerseveranceDreamsarenotachievedovernight;theyarebuiltthroughconsistenteffortandunwaveringdetermination.Perseveranceisthebridgebetweengoalsandaccomplishments.Whenfacedwithobsta
- 部署skywalking进行链路跟踪
BUG弄潮儿
skywalking
1.前言本实验文档基于单机es7作为skywalking的后端存储,使用nfs动态卷storageclass,es没有使用账号密码。2.环境k8s集群:v1.20.4版本k8s-master1192.168.110.235k8s-node1192.168.110.236k8s-node2192.168.110.237nfs192.168.110.239elasticsearch:7.12.0sky
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 基于 oneM2M 标准的空气质量监测系统的互操作性
神一样的老师
论文阅读分享物联网物联网
论文标题英文标题:InteroperabilityofAirQualityMonitoringSystemsthroughtheoneM2MStandard中文标题:基于oneM2M标准的空气质量监测系统的互操作性作者信息JonnarDanielleDiosana,GabrielAngeloLimlingan,DanielleBryanSore,MarcRosales,IsabelAustria,
- Training-free Neural Architecture Searchthrough Variance of Knowledge of Deep Network Weights(预览版本)
境心镜
免训练深度学习人工智能NAS
代码位置摘要深度学习彻底改变了计算机视觉,但它使用深度网络架构取得了巨大的成功,而这些架构大多是手工制作的,因此可能不是最理想的。神经架构搜索(NAS)旨在通过遵循明确定义的优化范式来弥补这一差距,该范式系统地寻找最佳架构,给定客观标准,例如最大分类准确度。然而,NAS的主要限制是其天文数字般的计算成本,因为它通常需要从头开始训练每个候选网络架构。在本文中,我们旨在通过基于Fisher信息提出一种
- 调用链追踪(Trace ID)
18你磊哥
java
前言:在Java中实现调用链追踪(TraceID)通常用于分布式系统中跟踪请求的完整链路,常见的实现方式包括手动编码或使用开源框架(如SkyWalking、Zipkin、SpringCloudSleuth等)。以下是具体实现方法及示例:1.手动实现TraceID通过ThreadLocal或MDC(MappedDiagnosticContext)存储TraceID,并在请求链路中传递。步骤1:定义T
- ARE 132: Cooperative Business Enterprises
后端
ARE132:CooperativeBusinessEnterprisesFinalProject:CaseStudyofCooperativeBusinessEnterprisesLearningobjectives:Thisprojectallowsyoutoapplythematerialcoveredthroughoutthequarterinananalysisofanexistingc
- Jetson nano配置Docker和torch运行环境
black0moonlight
docker容器运维
这里将介绍Jeston安装docker并部署walk-these-way的jeston镜像。注意,该方法有版本问题,Jepack4.6.1的python3.6torch无法与unitree官方提供的python3.8库兼容1.Docker安装这里安装的是dockerengine,如果已经有了dockerdesktop也同样可以使用。Ubuntu|DockerDocsRunthefollowingc
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- BB5112 Business Decision Modelling
后端
AssignmentBriefing(Level5)ModuleNameBusinessDecisionModellingModuleCodeBB5112AssignmentTitleAssignment2TypeofSubmissionOnlinethroughCanvasWeightingoftheassignmentintheoverallmodulegrade70%WordCount/Ti
- BB5112 Business Decision Modelling
后端
AssignmentBriefing(Level5)ModuleNameBusinessDecisionModellingModuleCodeBB5112AssignmentTitleAssignment2TypeofSubmissionOnlinethroughCanvasWeightingoftheassignmentintheoverallmodulegrade70%WordCount/Ti
- 32. 最长有效括号
阿图灵
算法
有时候递归改成记忆化搜索后报错或时间复杂度较高,可以试试用递推的角度考虑,直接位置依赖给你一个只包含'('和')'的字符串,找出最长有效(格式正确且连续)括号子串的长度。示例1:输入:s="(()"输出:2解释:最长有效括号子串是"()"示例2:输入:s=")()())"输出:4解释:最长有效括号子串是"()()"示例3:输入:s=""输出:0提示:0=0&&str[i-1-a]=='('){re
- 记忆化搜索与动态规划
好运莲莲~
动态规划
深度优先搜索和动态规划都可以解决最优解问题,即从很多解决问题的方案中找到最优的一个。很多情况下,最优解问题最直接的思维就是递归(深度优先搜索)。递归求解子问题时,没有出现重复子问题,则没有必要用动态规划,直接普通的递归就可以了;如果出现重复子问题就可以考虑记忆化搜索和动态规划,并且任何记忆化搜索都能改成动态规划。个人认为记忆话搜索思维更直接更简单,所以如果遇到一道从来没接触过的题目时,可以想想记忆
- 动态规划(记忆化搜索)
HangShao99
搜索动态规划
D-滑雪Michael喜欢滑雪百这并不奇怪,因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长底滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子12345161718196152425207142322218131211109一个人可以从某个点滑向上下左右相邻四个点之一,
- BZOJ3843: ZCC loves Army
L_0_Forever_LF
BZOJ多校LCTsplay
把树转成左儿子右兄弟的那种二叉树的形式发现一个点能且仅能给他的子树传递order,询问3就变成了询问一个点到根有多少个点对于传递message,可以给每个点定一个编号0的虚儿子,给他赋权1,就变成了询问两点间路径的权值和,注意要特判一个点是另一个点的祖先的情况,bzoj上的数据有误,不判这个才能过,hdu上的数据是对的可以去那里交对于操作1,把某个人的一段儿子截下来,可以用n棵splay处理每个人
- 批量下载arXiv论文数据的Python脚本
hajungong007
python
arXiv-toolsPrerequisitesArXivprovidesbulkdataaccessthroughAmazonS3.YouneedanaccountwithAmazonAWStobeabletodownloadthedata.Youalsoneedpython2.DownloadingarXivdocuments1-Installs3cmdwhichisacommandlinet
- 机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例
Mostcow
数据分析Python机器学习随机森林回归大数据
机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):任务类型:随机森林回归主要用于回归任务。在回归任务中,算法试图预测一个连续的数值输出,而不是一个离散的类别。输出:随机森林回归的输出是一个连续的数值,表示输入数据的预测结果。算法原理:随机森林回归同样基于决策树,但在回归任务中,每个决策树的
- 机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例
Mostcow
Python数据分析机器学习scikit-learn随机森林回归算法
机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):随机森林是一种集成学习方法,它通过构建多个决策树来进行预测。它对于处理大量特征、非线性关系和避免过拟合都有一定的优势。在Python中,你可以使用Scikit-learn库中的RandomForestRegressor来实现。随机森林回归作为
- 分布式监控Skywalking安装及使用教程(保姆级教程)(1)
2401_84181145
程序员分布式skywalking
前言本文主要讲解分布式链路追踪监控系统Skywalking的安装及使用教程,从0到1,图文并茂的保姆级教程。SkyWalking是一款用于分布式系统跟踪和性能监控的开源工具。它可以帮助开发人员了解分布式系统中不同组件之间的调用关系和性能指标,从而进行故障排查和性能优化。它支持多种语言和框架,包括Java、.NET、Node.js等。它通过在应用程序中插入代理或使用特定的SDK来收集跟踪数据,并将这
- Android HAL深入探索(1): 架构概述
一歲抬頭
android架构hal
在本文中,将深入学习了解AndroidHAL的不同方式和架构,以及它们之间的区别和联系。将从最早的LegacyHAL开始,然后从Android8.0(Oreo)开始引入的新的HAL定义方式:HIDL(HardwareInterfaceDefinitionLanguage)。将比较HIDL的两种模式:Passthroughmode和Binderizedmode,并分析它们各自的优缺点。最后将总结HA
- 编程小白冲Kaggle每日打卡(17)--kaggle学堂:<机器学习简介>随机森林
AZmax01
编程小白冲Kaggle每日打卡机器学习随机森林人工智能
Kaggle官方课程链接:RandomForests本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。RandomForests使用更复杂的机器学习算法。介绍决策树给你留下了一个艰难的决定。一棵有很多叶子的深树会被过度拟合,因为每一个预测都来自它叶子上少数房子的历史数据。但是,叶子很少的浅树表现不佳,因为它无法在原始数据中捕捉到尽可能多的区别。即使是当今最复杂的建模技术也面临着欠拟合和过拟
- Windows下程序崩溃生成dump文件的方法
秋の水
C++QtWidgetc++
一,为什么需要dump文件Windows客户端应用开发时,难免会遇到程序崩溃问题。当程序在Debug下运行崩溃时,我们可以直接定位到崩溃点。但是当程序打包成Release发布时,难免会遇到一些崩溃问题。一般遇到这样的崩溃,我们就需要使用dump文件加上符号表文件来进行调试程序。二,如何生成dump文件工欲善其事,必先利其器。这里直接给出一个CrashDump类,供各位大佬使用。在main函数实例化
- 基于RF随机森林机器学习算法的回归预测模型MATLAB代码实现了一个回归任务的决策树集成模型。
qq924711725
仿真模型机器学习算法随机森林
基于RF随机森林机器学习算法的回归预测模型MATLAB代码实现了一个回归任务的决策树集成模型。首先从Excel文件中导入数据集,并将数据划分为训练集和测试集。然后,对数据进行归一化处理并转置以适应模型的要求。文章目录MATLAB代码实现说明:MATLAB代码实现说明:运行代码前的注意事项:示例输出:MATLAB代码实现说明:示例输出:以下是一个基于随机森林(RF,RandomForest)机器学习
- SkyWalking Server配置文件
五百年前FHYA
数据监测skywalking
application.yml/config/application.yml1、cluster集群相关配置#集群配置cluster:#选择哪一种集群模式selector:${SW_CLUSTER:standalone}#单机版standalone:#zk注册集群配置,zk版本保证在3.5以上,oap-libs中也对3.4进行了支持zookeeper:nameSpace:${SW_NAMESPACE
- SkyWalking
Dream答案
SpringCloudAlibaba学习之旅skywalking分布式链路追踪
一、APM系统APM(ApplicationPerformanceMonitoring)即应用程序性能监控系统,是对企业系统即时监控以实现对应用程序性能管理和故障管理的系统化的解决方案。应用性能管理,主要指对企业的关键业务应用进行监测、优化,提高企业应用的可靠性和质量,保证用户得到良好的服务,降低IT成本;二、分布式链路追踪分布式链路追踪通过跟踪和记录请求在分布式系统中的传播路径和性能数据,帮助开
- 矩阵与图论系列 题解
搂鱼114514
矩阵图论算法
1.AT_dp_rWalk题意一个有向图有nnn个节点,编号111至nnn。给出一个二维数组A1...n,1...nA_{1...n,1...n}A1...n,1...n,若Ai,j=1A_{i,j}=1Ai,j=1说明节点iii到节点jjj有一条有向边;若Ai,j=0A_{i,j}=0Ai,j=0则说明节点iii到节点jjj没有边。求长度为kkk的路径的方案数。答案模109+710^9+7109
- Python Cookbook-2.16 遍历目录树
我不会编程555
#Python学习python开发语言
任务需要检查一个“目录”,或者某个包含子目录的目录树,并根据某种模式迭代所有的文件(也可能包含子目录)。解决方案Python标准库模块os中的生成器(generator)os.walk对于这个任务来说完全够用了不过我们可以给它打扮打扮,将其封装为一个我们自己的函数:importos,fnmatchdefall_files(root,patterns='*',single_level=False,y
- python将字符串s和换行符写入文件fp_【python】文件操作
徐士萍
本文内容包括:文件的读写操作文件的各种系统操作存储对象遍历文件上代码:importosimportos.pathrootdir="d:/code/su/data"#指明被遍历的文件夹forparent,dirnames,filenamesinos.walk(rootdir):#三个参数:分别返回1.父目录2.所有文件夹名字(不含路径)3.所有文件名字fordirnameindirnames:#输出
- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.20-2024.07.25
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理大语言模型VLM视觉语言模型论文推送
文章目录~1.LPGen:EnhancingHigh-FidelityLandscapePaintingGenerationthroughDiffusionModel2.HighEfficiencyImageCompressionforLargeVisual-LanguageModels3.Q-Ground:ImageQualityGroundingwithLargeMulti-modalityM
- skywalking前端_SkyWalking
智能迷宫
skywalking前端
Skywalking(简称SW)是分布式系统的应用程序性能监视(APM)工具,专为微服务、云原生和容器架构而设计,提供分布式追踪、服务网格遥测分析、度量聚合和可视化一体化解决方案。通过探针自动收集所需的指标,并进行分布式追踪,具有无代码嵌入,支持众多中间件,agent种类全面,性能消耗低等优点。下载在github的Skywalking项目中下载最新版安装包官网地址解压部署tar-zxvfapach
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多