NIO网络编程

 Netty学习之NIO基础 - Nyima's Blog

1、阻塞

  • 阻塞模式下,相关方法都会导致线程暂停
    • ServerSocketChannel.accept 会在没有连接建立时让线程暂停
    • SocketChannel.read 会在通道中没有数据可读时让线程暂停
    • 阻塞的表现其实就是线程暂停了,暂停期间不会占用 cpu,但线程相当于闲置
  • 单线程下,阻塞方法之间相互影响,几乎不能正常工作,需要多线程支持
  • 但多线程下,有新的问题,体现在以下方面
    • 32 位 jvm 一个线程 320k,64 位 jvm 一个线程 1024k,如果连接数过多,必然导致 OOM,并且线程太多,反而会因为频繁上下文切换导致性能降低
    • 可以采用线程池技术来减少线程数和线程上下文切换,但治标不治本,如果有很多连接建立,但长时间 inactive,会阻塞线程池中所有线程,因此不适合长连接,只适合短连接

服务端代码

public class Server {
    public static void main(String[] args) {
        // 创建缓冲区
        ByteBuffer buffer = ByteBuffer.allocate(16);
        // 获得服务器通道
        try(ServerSocketChannel server = ServerSocketChannel.open()) {
            // 为服务器通道绑定端口
            server.bind(new InetSocketAddress(8080));
            // 用户存放连接的集合
            ArrayList channels = new ArrayList<>();
            // 循环接收连接
            while (true) {
                System.out.println("before connecting...");
                //建立与客户端连接, SocketChannel 与客户端进行通信
                //没有连接时,会阻塞线程
                SocketChannel socketChannel = server.accept();
                System.out.println("after connecting...");
                channels.add(socketChannel);
                // 循环遍历集合中的连接
                for(SocketChannel channel : channels) {
                    System.out.println("before reading");
                    // 接/处理通道中的数据
                    // 当通道中没有数据可读时,会阻塞线程
                    channel.read(buffer);
                    buffer.flip();
                    //调试打印出来
                    ByteBufferUtil.debugRead(buffer);
                    buffer.clear();
                    System.out.println("after reading");
                }
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

客户端代码

public class Client {
    public static void main(String[] args) {
        try (SocketChannel socketChannel = SocketChannel.open()) {
            // 建立连接
            socketChannel.connect(new InetSocketAddress("localhost", 8080));
            System.out.println("waiting...");
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

运行结果

  • 客户端-服务器建立连接前:服务器端因accept阻塞
  • NIO网络编程_第1张图片
  • 客户端-服务器建立连接后,客户端发送消息前:服务器端因通道为空被阻塞
  •   当通道中没有数据可读时,会阻塞线程 channel.read(buffer);
  • NIO网络编程_第2张图片

  • 客户端发送数据后,服务器处理通道中的数据。再次进入循环时,再次被accept阻塞

 NIO网络编程_第3张图片

  • 之前的客户端再次发送消息服务器端因为被accept阻塞,无法处理之前客户端发送到通道中的信息,accept只有建立新的连接才会继续执行,当有一个新的连接时,才会接收到之前客户端发送的消息,如果没有新的连接,线程会一直阻塞在accept

NIO网络编程_第4张图片

 2、非阻塞

  • 可以通过ServerSocketChannel的configureBlocking(false)方法将获得连接设置为非阻塞的。此时若没有连接,accept会返回null

  • 可以通过SocketChannel的configureBlocking(false)方法将从通道中读取数据设置为非阻塞的。若此时通道中没有数据可读,read会返回-1

服务器代码如下

public class Server {
    public static void main(String[] args) {
        // 创建缓冲区
        ByteBuffer buffer = ByteBuffer.allocate(16);
        // 获得服务器通道
        try {
            ServerSocketChannel server = ServerSocketChannel.open()
            // 为服务器通道绑定端口
            server.bind(new InetSocketAddress(8080));
            // 用户存放连接的集合
            ArrayList channels = new ArrayList<>();
            // 循环接收连接
            while (true) {
                // 设置为非阻塞模式,没有连接时返回null,不会阻塞线程
                server.configureBlocking(false);
                SocketChannel socketChannel = server.accept();
                // 通道不为空时才将连接放入到集合中
                if (socketChannel != null) {
                    System.out.println("after connecting...");
                    channels.add(socketChannel);
                }
                // 循环遍历集合中的连接
                for(SocketChannel channel : channels) {
                    // 处理通道中的数据
                    // 设置为非阻塞模式,若通道中没有数据,会返回0,不会阻塞线程
                    channel.configureBlocking(false);
                    int read = channel.read(buffer);//没有数据,会返回0,不会阻塞线程
                    if(read > 0) {
                        buffer.flip();
                        ByteBufferUtil.debugRead(buffer);
                        buffer.clear();
                        System.out.println("after reading");
                    }
                }
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

这样写存在一个问题,因为设置为了非阻塞,会一直执行while(true)中的代码,CPU一直处于忙碌状态,会使得性能变低,所以实际情况中不使用这种方法处理请求

3、Selector

多路复用

单线程可以配合 Selector 完成对多个 Channel 可读写事件的监控,这称之为多路复用

  • 多路复用仅针对网络 IO,普通文件 IO 无法利用多路复用
  • 如果不用 Selector 的非阻塞模式,线程大部分时间都在做无用功,而 Selector 能够保证
    • 有可连接事件时才去连接
    • 有可读事件才去读取
    • 有可写事件才去写入
      • 限于网络传输能力,Channel 未必时时可写,一旦 Channel 可写,会触发 Selector 的可写事件

4、使用及Accept事件

 要使用Selector实现多路复用,服务端代码如下改进

public class SelectServer {
    public static void main(String[] args) {
        ByteBuffer buffer = ByteBuffer.allocate(16);
        // 获得服务器通道
        try(ServerSocketChannel serverChannel = ServerSocketChannel.open()) {
            serverChannel .bind(new InetSocketAddress(8080));
            // 创建选择器
            Selector selector = Selector.open();
            
            // 通道必须设置为非阻塞模式
            serverChannel.configureBlocking(false);
            // 将通道注册到选择器中,并设置感兴趣的事件
            //返回值是当前是事件 下面的 iterator.next();
            serverChannel.register(selector, SelectionKey.OP_ACCEPT);
            while (true) {
                // 若没有事件就绪,线程会被阻塞,反之不会被阻塞。从而避免了CPU空转
                // 返回值为就绪的事件个数
                int ready = selector.select();
                System.out.println("selector ready counts : " + ready);
                
                // 获取所有事件
                Set selectionKeys = selector.selectedKeys();
                
                // 使用迭代器遍历事件
                Iterator iterator = selectionKeys.iterator();
                while (iterator.hasNext()) {
                    SelectionKey key = iterator.next();
                    
                    // 判断key的类型
                    if(key.isAcceptable()) {
                        // 获得key对应的channel
                        ServerSocketChannel channel = (ServerSocketChannel) key.channel();
                        System.out.println("before accepting...");
                        
        				// 获取连接并处理,而且是必须处理,否则需要取消,如果不处理 会一直循环
                        SocketChannel socketChannel = channel.accept();
                        System.out.println("after accepting...");
                        
                        // 处理完毕后移除
                        iterator.remove();
                    }
                }
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

步骤解析

  • 获得选择器Selector

Selector selector = Selector.open();

  • 通道设置为非阻塞模式,并注册到选择器中,并设置感兴趣的事件
    • channel 必须工作在非阻塞模式
    • FileChannel 没有非阻塞模式,因此不能配合 selector 一起使用
    • 绑定的事件类型可以有
      • connect - 客户端连接成功时触发
      • accept - 服务器端成功接受连接时触发
      • read - 数据可读入时触发,有因为接收能力弱,数据暂不能读入的情况
      • write - 数据可写出时触发,有因为发送能力弱,数据暂不能写出的情况

// 通道必须设置为非阻塞模式 server.configureBlocking(false); // 将通道注册到选择器中,并设置感兴趣的实践 server.register(selector, SelectionKey.OP_ACCEPT);

  • 通过Selector监听事件,并获得就绪的通道个数,若没有通道就绪,线程会被阻塞

    • 阻塞直到绑定事件发生

      int count = selector.select();Copy
    • 阻塞直到绑定事件发生,或是超时(时间单位为 ms)

      int count = selector.select(long timeout);Copy
    • 不会阻塞,也就是不管有没有事件,立刻返回,自己根据返回值检查是否有事件

      int count = selector.selectNow();
  • 获取就绪事件并得到对应的通道,然后进行处理

// 获取所有事件
Set selectionKeys = selector.selectedKeys();
                
// 使用迭代器遍历事件
Iterator iterator = selectionKeys.iterator();

while (iterator.hasNext()) {
	SelectionKey key = iterator.next();
                    
	// 判断key的类型,此处为Accept类型
	if(key.isAcceptable()) {
        // 获得key对应的channel
        ServerSocketChannel channel = (ServerSocketChannel) key.channel();

        // 获取连接并处理,而且是必须处理,否则需要取消
        SocketChannel socketChannel = channel.accept();

        // 处理完毕后移除
        iterator.remove();
	}
}

事件发生后能否不处理

事件发生后,要么处理,要么取消(cancel),不能什么都不做,否则下次该事件仍会触发,这是因为 nio 底层使用的是水平触发

 5、Read事件

  • 在Accept事件中,若有客户端与服务器端建立了连接,需要将其对应的SocketChannel设置为非阻塞,并注册到选择其中
  • 添加Read事件,触发后进行读取操作

public class SelectServer {
    public static void main(String[] args) {
        ByteBuffer buffer = ByteBuffer.allocate(16);
        // 获得服务器通道
        try(ServerSocketChannel server = ServerSocketChannel.open()) {
            server.bind(new InetSocketAddress(8080));
            // 创建选择器
            Selector selector = Selector.open();
            // 通道必须设置为非阻塞模式
            server.configureBlocking(false);
            // 将通道注册到选择器中,并设置感兴趣的实践
            server.register(selector, SelectionKey.OP_ACCEPT);
            // 为serverKey设置感兴趣的事件
            while (true) {
                // 若没有事件就绪,线程会被阻塞,反之不会被阻塞。从而避免了CPU空转
                // 返回值为就绪的事件个数
                int ready = selector.select();
                System.out.println("selector ready counts : " + ready);
                // 获取所有事件
                Set selectionKeys = selector.selectedKeys();
                // 使用迭代器遍历事件
                Iterator iterator = selectionKeys.iterator();
                while (iterator.hasNext()) {
                    SelectionKey key = iterator.next();
                    // 判断key的类型
                    if(key.isAcceptable()) {
                        // 获得key对应的channel
                        ServerSocketChannel channel = (ServerSocketChannel) key.channel();
                        System.out.println("before accepting...");
                        // 获取连接
                        SocketChannel socketChannel = channel.accept();
                        System.out.println("after accepting...");
                        // 设置为非阻塞模式,同时将连接的通道也注册到选择其中
                        socketChannel.configureBlocking(false);
                        socketChannel.register(selector, SelectionKey.OP_READ);
                        // 处理完毕后移除
                        iterator.remove();
                    } else if (key.isReadable()) {
                        SocketChannel channel = (SocketChannel) key.channel();
                        System.out.println("before reading...");
                        channel.read(buffer);
                        System.out.println("after reading...");
                        buffer.flip();
                        ByteBufferUtil.debugRead(buffer);
                        buffer.clear();
                        // 处理完毕后移除
                        iterator.remove();
                    }
                }
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

删除事件

当处理完一个事件后,一定要调用迭代器的remove方法移除对应事件,否则会出现错误。原因如下

以我们上面的 Read事件 的代码为例

  • 当调用了 server.register(selector, SelectionKey.OP_ACCEPT)后,Selector中维护了一个集合,用于存放SelectionKey以及其对应的通道

// WindowsSelectorImpl 中的 SelectionKeyImpl数组
private SelectionKeyImpl[] channelArray = new SelectionKeyImpl[8];
public class SelectionKeyImpl extends AbstractSelectionKey {
    // Key对应的通道
    final SelChImpl channel;
    ...
}

NIO网络编程_第5张图片

 当选择器中的通道对应的事件发生后,selecionKey会被放到另一个集合中,但是selecionKey不会自动移除,所以需要我们在处理完一个事件后,通过迭代器手动移除其中的selecionKey。否则会导致已被处理过的事件再次被处理,就会引发错误

 NIO网络编程_第6张图片

断开处理

当客户端与服务器之间的连接断开时,会给服务器端发送一个读事件,对异常断开和正常断开需要加以不同的方式进行处理

  • 正常断开

    • 正常断开时,服务器端的channel.read(buffer)方法的返回值为-1,所以当结束到返回值为-1时,需要调用key的cancel方法取消此事件,并在取消后移除该事件

int read = channel.read(buffer);
// 断开连接时,客户端会向服务器发送一个写事件,此时read的返回值为-1
if(read == -1) {
    // 取消该事件的处理
	key.cancel();
    channel.close();
} else {
    ...
}
// 取消或者处理,都需要移除key
iterator.remove();

NIO网络编程_第7张图片

  • 异常断开

    • 异常断开时,会抛出IOException异常, 在try-catch的catch块中捕获异常并调用key的cancel方法即可

消息边界

不处理消息边界存在的问题

将缓冲区的大小设置为4个字节,发送2个汉字(你好),通过decode解码并打印时,会出现乱码

ByteBuffer buffer = ByteBuffer.allocate(4);
// 解码并打印
System.out.println(StandardCharsets.UTF_8.decode(buffer));
你�
��

这是因为UTF-8字符集下,1个汉字占用3个字节,此时缓冲区大小为4个字节,一次读时间无法处理完通道中的所有数据,所以一共会触发两次读事件。这就导致 你好 的  字被拆分为了前半部分和后半部分发送,解码时就会出现问题

处理消息边界

传输的文本可能有以下三种情况

  • 文本大于缓冲区大小
    • 此时需要将缓冲区进行扩容
  • 发生半包现象
  • 发生粘包现象

 NIO网络编程_第8张图片

解决思路大致有以下三种

  • 固定消息长度,数据包大小一样,服务器按预定长度读取,当发送的数据较少时,需要将数据进行填充,直到长度与消息规定长度一致。缺点是浪费带宽
  • 另一种思路是按分隔符拆分,缺点是效率低,需要一个一个字符地去匹配分隔符
  • TLV 格式,即 Type 类型、Length 长度、Value 数据(也就是在消息开头用一些空间存放后面数据的长度),如HTTP请求头中的Content-Type与Content-Length。类型和长度已知的情况下,就可以方便获取消息大小,分配合适的 buffer,缺点是 buffer 需要提前分配,如果内容过大,则影响 server 吞吐量
    • Http 1.1 是 TLV 格式
    • Http 2.0 是 LTV 格式

 NIO网络编程_第9张图片

 剩下文档直接跳网站  Netty学习之NIO基础 - Nyima's Blog

你可能感兴趣的:(nio,网络)