在现代的企业环境中,单机容量往往无法存储大量数据,需要跨机器存储。统一管理分布在集群上的文件系统称为分布式文件系统。而一旦在系统中,引入网络,就不可避免地引入了所有网络编程的复杂性,例如挑战之一是如果保证在节点不可用的时候数据不丢失。
传统的网络文件系统(NFS)虽然也称为分布式文件系统,但是其存在一些限制。由于NFS中,文件是存储在单机上,因此无法提供可靠性保证,当很多客户端同时访问NFS Server时,很容易造成服务器压力,造成性能瓶颈。另外如果要对NFS中的文件中进行操作,需要首先同步到本地,这些修改在同步到服务端之前,其他客户端是不可见的。某种程度上,NFS不是一种典型的分布式系统,虽然它的文件的确放在远端(单一)的服务器上面。
从NFS的协议栈可以看到,它事实上是一种VFS(操作系统对文件的一种抽象)实现。
HDFS,是Hadoop Distributed File System的简称,是Hadoop抽象文件系统的一种实现。Hadoop抽象文件系统可以与本地系统、Amazon S3等集成,甚至可以通过Web协议(webhsfs)来操作。HDFS的文件分布在集群机器上,同时提供副本进行容错及可靠性保证。例如客户端写入读取文件的直接操作都是分布在集群各个机器上的,没有单点性能压力。
HDFS 是一个主从结构,一个 HDFS 集群有一个名字节点,它是一个管理文件命名空间和调节客户端访问文件的主服务器,当然还有一些数据节点,通常是一个节点一个机器,它来管理对应节点的存储。HDFS 对外开放文件命名空间并允许用户数据以文件形式存储。
内部机制是将一个文件分割成一个或多个块,这些块被存储在一组数据节点中。名字节点用来操作文件命名空间的文件或目录操作,如打开、关闭、重命名等等。它同时确定块与数据节点的映射。数据节点来负责来自文件系统客户的读写请求。数据节点同时还要执行块的创建、删除、和来自名字节点的块复制指令。
集群中只有一个名字节点极大地简单化了系统的体系结构。名字节点是仲裁者和所有 HDFS 元数据的仓库,用户的实际数据不经过名字节点。
Namenode存放文件系统树及所有文件、目录的元数据。元数据持久化为2种形式:
FsImage文件
FsImage文件包含文件系统中所有目录和文件inode的序列化形式。每个inode是一个文件或目录的元数据的内部表示,并包含此类信息:文件的复制等级、修改和访问时间、访问权限、块大小以及组成文件的块。对于目录,则存储修改时间、权限和配额元数据.
FsImage文件没有记录块存储在哪个数据节点。而是由名称节点把这些映射保留在内存中,当数据节点加入HDFS集群时,数据节点会把自己所包含的块列表告知给名称节点,此后会定期执行这种告知操作,以确保名称节点的块映射是最新的。
Namenode节点的启动
Namenode节点容错
持久化数据中不包括Block所在的节点列表,及文件的Block分布在集群中的哪些节点上,这些信息是在系统重启的时候重新构建(通过Datanode汇报的Block信息)。在HDFS中,Namenode可能成为集群的单点故障,Namenode不可用时,整个文件系统是不可用的。HDFS针对单点故障提供了2种解决机制:
SecondaryNameNode的工作情况
数据节点负责存储和提取Block,读写请求可能来自namenode,也可能直接来自客户端。数据节点周期性向Namenode汇报自己节点上所存储的Block相关信息。
副本技术即分布式数据复制技术,是分布式计算的一个重要组成部分。该技术允许数据在多个服务器端共享,一个本地服务器可以存取不同物理地点的远程服务器上的数据,也可以使所有的服务器均持有数据的拷贝。
通过过副本技术可以有以下优点:
HDFS 设计成能可靠地在集群中大量机器之间存储大量的文件,它以块序列的形式存储文件。文件中除了最后一个块,其他块都有相同的大小。属于文件的块为了故障容错而被复制。块的大小和复制数是以文件为单位进行配置的,应用可以在文件创建时或者之后修改复制因子。HDFS 中的文件是一次写的,并且任何时候都只有一个写操作。
名字节点负责处理与所有的块复制相关的决策。它周期性地接受集群中数据节点的心跳和块报告。一个心跳的到达表示这个数据节点是正常的。一个块报告包括该数据节点上所有块的列表。
块副本存放位置的选择严重影响 HDFS 的可靠性和性能。HDFS 采用机架敏感(rack awareness)的副本存放策略来提高数据的可靠性、可用性和网络带宽的利用率。
HDFS 运行在跨越大量机架的集群之上。两个不同机架上的节点是通过交换机实现通信的,在大多数情况下,相同机架上机器间的网络带宽优于在不同机架上的机器。
在开始的时候,每一个数据节点自检它所属的机架 id,然后在向名字节点注册的时候告知它的机架 id。HDFS 提供接口以便很容易地挂载检测机架标示的模块。一个简单但不是最优的方式就是将副本放置在不同的机架上,这就防止了机架故障时数据的丢失,并且在读数据的时候可以充分利用不同机架的带宽。这个方式均匀地将复制分散在集群中,这就简单地实现了组建故障时的负载均衡。然而这种方式增加了写的成本,因为写的时候需要跨越多个机架传输文件块。
HDFS的副本的存放策略是可靠性、写带宽、读带宽之间的权衡。默认策略如下:
在Hadoop 1.x 中,Namenode是集群的单点故障,一旦Namenode出现故障,整个集群将不可用,重启或者开启一个新的Namenode才能够从中恢复。值得一提的是,Secondary Namenode并没有提供故障转移的能力。集群的可用性受到影响表现在:
Hadoop HA(High Available)通过同时配置两个处于Active/Passive模式的Namenode来解决上述问题,分别叫Active Namenode和Standby Namenode. Standby Namenode作为热备份,从而允许在机器发生故障时能够快速进行故障转移,同时在日常维护的时候使用优雅的方式进行Namenode切换。Namenode只能配置一主一备,不能多于两个Namenode。
主Namenode处理所有的操作请求(读写),而Standby只是作为slave,维护尽可能同步的状态,使得故障时能够快速切换到Standby。为了使Standby Namenode与Active Namenode数据保持同步,两个Namenode都与一组Journal Node进行通信。当主Namenode进行任务的namespace操作时,都会确保持久会修改日志到Journal Node节点中的大部分。Standby Namenode持续监控这些edit,当监测到变化时,将这些修改应用到自己的namespace。
当进行故障转移时,Standby在成为Active Namenode之前,会确保自己已经读取了Journal Node中的所有edit日志,从而保持数据状态与故障发生前一致。
为了确保故障转移能够快速完成,Standby Namenode需要维护最新的Block位置信息,即每个Block副本存放在集群中的哪些节点上。为了达到这一点,Datanode同时配置主备两个Namenode,并同时发送Block报告和心跳到两台Namenode。
确保任何时刻只有一个Namenode处于Active状态非常重要,否则可能出现数据丢失或者数据损坏。当两台Namenode都认为自己的Active Namenode时,会同时尝试写入数据(不会再去检测和同步数据)。为了防止这种脑裂现象,Journal Nodes只允许一个Namenode写入数据,内部通过维护epoch数来控制,从而安全地进行故障转移。
有两种方式可以进行edit log共享:
如图所示,NFS作为主备Namenode的共享存储。这种方案可能会出现脑裂(split-brain),即两个节点都认为自己是主Namenode并尝试向edit log写入数据,这可能会导致数据损坏。通过配置fencin脚本来解决这个问题,fencing脚本用于:
使用这种方案,管理员就可以手工触发Namenode切换,然后进行升级维护。但这种方式存在以下问题:
因此需要另一种方式来处理这些问题:
QJM(Quorum Journal Manager)是Hadoop专门为Namenode共享存储开发的组件。其集群运行一组Journal Node,每个Journal 节点暴露一个简单的RPC接口,允许Namenode读取和写入数据,数据存放在Journal节点的本地磁盘。当Namenode写入edit log时,它向集群的所有Journal Node发送写入请求,当多数节点回复确认成功写入之后,edit log就认为是成功写入。例如有3个Journal Node,Namenode如果收到来自2个节点的确认消息,则认为写入成功。
而在故障自动转移的处理上,引入了监控Namenode状态的ZookeeperFailController(ZKFC)。ZKFC一般运行在Namenode的宿主机器上,与Zookeeper集群协作完成故障的自动转移。整个集群架构图如下:
Namenode使用QJM 客户端提供的RPC接口与Namenode进行交互。写入edit log时采用基于仲裁的方式,即数据必须写入JournalNode集群的大部分节点。服务端Journal运行轻量级的守护进程,暴露RPC接口供客户端调用。实际的edit log数据保存在Journal Node本地磁盘。架构图如下:
Journal Node通过epoch数来解决脑裂的问题,称为JournalNode fencing。具体工作原理如下:
这种方式解决了NFS方式的3个问题:
前面提到,为了支持故障转移,Hadoop引入两个新的组件:Zookeeper Quorum和ZKFailoverController process(简称ZKFC)。
Zookeeper的任务包括:
在每个Namenode守护进程的机器上,同时也会运行一个ZKFC,用于完成以下任务:
如果ZKFC所在机器的Namenode健康状态良好,并且用于选举的znode锁未被其他节点持有,则ZKFC会尝试获取锁,成功获取这个排它锁就代表获得选举,获得选举之后负责故障转移,如果有必要,会fencing掉之前的namenode使其不可用,然后将自己的namenode切换为Active状态。
在读数据过程中,如果与Datanode的通信发生错误,DFSInputStream对象会尝试从下一个最佳节点读取数据,并且记住该失败节点, 后续Block的读取不会再连接该节点。
读取一个Block之后,DFSInputStram会进行检验和验证,如果Block损坏,尝试从其他节点读取数据,并且将损坏的block汇报给Namenode。
客户端连接哪个datanode获取数据,是由namenode来指导的,这样可以支持大量并发的客户端请求,namenode尽可能将流量均匀分布到整个集群。
Block的位置信息是存储在namenode的内存中,因此相应位置请求非常高效,不会成为瓶颈。
打开一个DFSOutputStream流,Client会写数据到流内部的一个缓冲区中,然后数据被分解成多个Packet,每个Packet大小为64k字节,每个Packet又由一组chunk和这组chunk对应的checksum数据组成,默认chunk大小为512字节,每个checksum是对512字节数据计算的校验和数据。
当Client写入的字节流数据达到一个Packet的长度,这个Packet会被构建出来,然后会被放到队列dataQueue中,接着DataStreamer线程会不断地从dataQueue队列中取出Packet,发送到复制Pipeline中的第一个DataNode上,并将该Packet从dataQueue队列中移到ackQueue队列中。ResponseProcessor线程接收从Datanode发送过来的ack,如果是一个成功的ack,表示复制Pipeline中的所有Datanode都已经接收到这个Packet,ResponseProcessor线程将packet从队列ackQueue中删除。
在发送过程中,如果发生错误,所有未完成的Packet都会从ackQueue队列中移除掉,然后重新创建一个新的Pipeline,排除掉出错的那些DataNode节点,接着DataStreamer线程继续从dataQueue队列中发送Packet。
下面是DFSOutputStream的结构及其原理,如图所示:
从下面3个方面来描述内部流程: