数据结构与算法 练习(一)

1.将2个递增的有序链表合并为一个有序链表; 要求结果链表仍然使用两个链表的存储空间,不另外占用其他的存储空间. 表中不允许有重复的数据

关键词:
递增有序链表,不允许有重复数据,保留递增关系(后插法)
不占用额外的存储空间指的是不能开辟新节点,赋值在链接到链表上
思路:

(1)假设待合并的链表为La和Lb,合并后的新表使用头指针Lc(Lc的表头结点设为La的表头结点)指向. Pa 和 Pb 分别是La,Lb的工作指针.初始化为相应链表的首元结点
(2)从首元结点开始比较, 当两个链表La 和Lb 均未到达表尾结点时,依次摘取其中较小值重新链表在Lc表的最后
(3)如果两个表中的元素相等,只摘取La表中的元素,删除Lb表中的元素,这样确保合并后表中无重复的元素
(4)当一个表达到表尾结点为空时,非空表的剩余元素直接链接在Lc表最后
(5)最后释放链表Lb的头结点

void MergeList(LinkList *La, LinkList *Lb, LinkList *Lc){
    //目标:将2个递增的有序链表La,Lb 合并为一个递增的有序链表Lc
    
    LinkList pa,pb,pc,temp;
    //pa 是链表La的工作指针,pb 是链表Lb的工作指针, 初始化为首元结点;
    pa = (*La)->next;
    pb = (*Lb)->next;
    
    *Lc = pc = *La;
    while (pa && pb) {
        if (pa->data < pb->data) {
            //取较小者La中的元素,将pa链接在pc的后面,pa指针后移
            pc->next = pa;
            pc = pa;
            pa = pa->next;
        }else if (pa->data > pb->data){
            //取较小者Lb的元素,将pb链接在pc后面, pb指针后移
            pc->next = pb;
            pc = pb;
            pb = pb->next;
        } else {
            //相等时取La中的元素,删除Lb的元素;
            pc->next = pa;
            pc = pa;
            pa = pa ->next;
            temp = pb->next;
            free(pb);
            pb = temp;
        }
    }
    
    //将非空表的剩余元素之间链接在Lc表的最后
    pc->next = pa?pa:pb;
    
    //释放Lb的头结点
    free(*Lb);
}

2.已知两个链表A和B分别表示两个集合.其元素递增排列. 设计一个算法,用于求出A与B的交集,并存储在A链表中;

例如:

La = {2,4,6,8}; Lb = {4,6,8,10};

Lc = {4,6,8}

关键词:
依次摘取2个表中相等的元素重新进行链接,删除其他不等的元素
思路:

(1)假设待合并的链表为La和Lb,合并后的新表使用头指针Lc(Lc的表头结点设为La的表头结点)指向. Pa 和 Pb 分别是La,Lb的工作指针.初始化为相应链表的首元结点
(2)从首元结点开始比较, 当两个链表La 和Lb 均未到达表尾结点时
(3)如果两个表中的元素相等,只摘取La表中的元素,删除Lb表中的元素
(4)如果其中一个表中的元素较小,删除此表中较小的元素. 此表的工作指针后移
(5)当链表La和Lb有一个先到达表尾结点为空时,依次删除另一个非空表中的所有元素,最后释放链表lb

void Intersection(LinkList *La, LinkList *Lb, LinkList *Lc){
    
    //目标: 求2个递增的有序链表La,Lb的交集, 使用头指针Lc指向带回;
    LinkList pa,pb,pc,temp;
  
    //pa 是链表La的工作指针,pb 是链表Lb的工作指针, 初始化为首元结点;La的头结点作为Lc的头结点;
    pa = (*La)->next;
    pb = (*Lb)->next;
    *Lc = pc = *La;
    
    while (pa && pb) {
        
        if (pa->data == pb->data) {
            //相等,交集并入结果链表中;
            //(1).取La中的元素,将pa链接到pc的后面,pa指针后移;
            pc->next = pa;
            pc = pa;
            pa = pa->next;
            //(2)删除Lb中对应相等的元素
            temp = pb;
            pb = pb->next;
            free(temp);
        }else if(pa->data < pb->data){
            
            //删除较小值La的元素;
            temp = pa;
            pa = pa->next;
            free(temp);
        }else{
            //删除较小值Lb中的元素
            temp = pb;
            pb = pb->next;
            free(temp);
        }
    }
    
    //Lb为空,删除非空表La中的所有元素
    while (pa) {
       
        temp = pa;
        pa = pa->next;
        free(temp);
    }
    
    //La为空,删除非空表Lb中的所有元素
    while (pb) {
        temp = pb;
        pb = pb->next;
        free(temp);
    }
    
    
    pc->next = NULL;
    free(*Lb);
}

3.设计一个算法,将链表中所有节点的链接方向"原地旋转",即要求仅仅利用原表的存储空间. 换句话说,要求算法空间复杂度为O(1)

例如:L={0,2,4,6,8,10}, 逆转后: L = {10,8,6,4,2,0}

关键词:
不能开辟新的空间,只能改变指针的指向;
可以考虑逐个摘取结点,利用前插法创建链表的思想,将结点一次插入到头结点的后面
因为先插入的结点为表尾,后插入的结点为表头,即可实现链表的逆转
思路:

(1)利用原有的头结点*L,p为工作指针, 初始时p指向首元结点. 因为摘取的结点依次向前插入,为确保链表尾部为空,初始时将头结点的指针域置空
(2)从前向后遍历链表,依次摘取结点,在摘取结点前需要用指针q记录后继结点,以防止链接后丢失后继结点
(3)将摘取的结点插入到头结点之后,最后p指向新的待处理节点q(p=q)

void Inverse(LinkList *L){
    //目的: 逆转带头结点单链表L;
    LinkList p,q;
    //p指向首元结点;
    p = (*L)->next;
    //头结点的指针域置空
    (*L)->next = NULL;
    
    //遍历链表
    while (p!=NULL) {
        
        //q执行p的后继
        q = p->next;
        //p->next = (*L)->next
        p->next = (*L)->next;
        //*p 插入到头结点之后;
        (*L)->next = p;
        //处理下一个结点
        p = q;
    }
}

4.设计一个算法,删除递增有序链表中值大于等于mink且小于等于maxk(mink,maxk是给定的两个参数,其值可以和表中的元素相同,也可以不同)的所有元素

关键词:
通过遍历链表能够定位带删除元素的下边界和上边界, 即可找到第一个值大于mink的结点和第一个值大于等于maxk的结点
思路:

(1)查找第一个值大于mink的结点,用q指向该结点,pre 指向该结点的前驱结点
(2)继续向下遍历链表, 查找第一个值大于等于maxk的结点,用p指向该结点
(3)修改下边界前驱结点的指针域, 是其指向上边界(pre->next = p)
(4)依次释放待删除结点的空间(介于pre和p之间的所有结点)

void DeleteMinMax(LinkList *L, int mink, int maxk){
    //目标: 删除递增有序链表L中值大于等于mink 和小于等于maxk的所有元素
    
    LinkList p,q,pre;
    pre = *L;
    LinkList temp;
    
    //p指向首元结点
    p = (*L)->next;
    
    //1.查找第一值大于mink的结点
    while (p && p->data < mink) {
        //指向前驱结点
        pre = p;
        p = p->next;
    }
    
    //2.查找第一个值大于等于maxk的结点
    while (p && p->data<=maxk) {
        p = p->next;
    }
    
    //3.修改待删除的结点指针
    q = pre->next;
    pre->next = p;
    
    while (q != p) {
        temp = q->next;
        free(q);
        q = temp;
    }
}

5.设将n(n>1)个整数存放到一维数组R中, 试设计一个在时间和空间两方面都尽可能高效的算法;将R中保存的序列循环左移p个位置(0

例如: pre[10] = {0,1,2,3,4,5,6,7,8,9},

n = 10,p = 3;

pre[10] = {3,4,5,6,7,8,9,0,1,2}

思路:
  1. 先将n个数据原地逆置 9,8,7,6,5,4,3,2,1,0;
  2. 将n个数据拆解成[9,8,7,6,5,4,3] [2,1,0]
  3. 将前n-p个数据和后p个数据分别原地逆置; [3,4,5,6,7,8,9] [0,1,2]

复杂度分析:
时间复杂度: O(n); 时间复杂度:O(1)

void Reverse(int *pre,int left ,int right){
    
    //将数组R中的数据原地逆置
    
    //i等于左边界left,j等于右边界right;
    int i = left,j = right;
    int temp;
    
    //交换pre[i] 和 pre[j] 的值
    while (i < j) {
        
        //交换
        temp = pre[i];
        pre[i] = pre[j];
        pre[j] = temp;
        
        //i右移,j左移
        i++;
        j--;
    }
}

void LeftShift(int *pre,int n,int p){
    
    //将长度为n的数组pre 中的数据循环左移p个位置
    if (p>0 && p

6.已知一个整数序列A = (a0,a1,a2,...an-1),其中(0<= ai <=n),(0<= i<=n). 若存在ap1= ap2 = ...= apm = x,且m>n/2(0<=pk
思路:

主元素,是数组中的出现次数超过一半的元素; 当数组中存在主元素时,所有非主元素的个数和必少于一半. 如果让主元素和一个非主元素配对, 则最后多出来的元素(没有元素与之匹配就是主元素

  1. 选取候选主元素, 从前向后依次扫描数组中的每个整数, 假定第一个整数为主元素,将其保存在Key中,计数为1. 若遇到下一个整数仍然等于key,则计数加1. 否则计数减1. 当计数减到0时, 将遇到的下一个整数保存到key中, 计数重新记为1. 开始新一轮计数. 即可从当前位置开始重上述过程,直到将全部数组元素扫描一遍;
  2. 判断key中的元素是否是真正的主元素, 再次扫描数组, 统计key中元素出现的次数,若大于n/2,则为主元素,否则,序列中不存在主元素

算法分析:
时间复杂度: O(n)
空间复杂度: O(1)

int MainElement(int *A, int n){
    
    //目标: 求整数序列A中的主元素;
    //count 用来计数
    int count = 1;
    //key 用来保存候选主元素, 初始A[0]
    int key = A[0];
    
    //(1) 扫描数组,选取候选主元素
    for (int i = 1; i < n; i++) {
        
        //(2) 如果A[i]元素值 == key ,则候选主元素计数加1;
        if (A[i] == key) {
            count++;
        }else{
            //(3) 当前元素A[i] 非候选主元素,计数减1;
            if(count >0){
                count--;
                
            }else{
               //(4) 如果count 等于0,则更换候选主元素,重新计数
                key = A[i];
                count = 1;
            }
            
        }
    }

    //如果count >0
    if (count >0){
        
        //(5)统计候选主元素的实际出现次数
        for (int i = count = 0; i < n; i++)
            if (A[i] == key) count++;
    }
    
    //(6)判断count>n/2, 确认key是不是主元素
    if (count > n/2) return key;
    else return -1; //不存在主元素

}

7.用单链表保存m个整数, 结点的结构为(data,link),且|data|<=n(n为正整数). 现在要去设计一个时间复杂度尽可能高效的算法. 对于链表中的data 绝对值相等的结点, 仅保留第一次出现的结点,而删除其余绝对值相等的结点.例如,链表A = {21,-15,15,-7,15}, 删除后的链表A={21,-15,-7}

思路:

要求设计一个时间复杂度尽量高效的算法,而已知|data|<=n, 所以可以考虑用空间换时间的方法. 申请一个空间大小为n+1(0号单元不使用)的辅助数组. 保存链表中已出现的数值,通过对链表进行一趟扫描来完成删除

  1. 申请大小为n+1的辅助数组t并赋值初值为0;
  2. 从首元结点开始遍历链表,依次检查t[|data|]的值, 若[|data|]为0,即结点首次出现,则保留该结点,并置t[|data|] = 1,若t[|data|]不为0,则将该结点从链表中删除

复杂度分析:
时间复杂度: O(m),对长度为m的链表进行一趟遍历,则算法时间复杂度为O(m);
空间复杂度: O(n)

void DeleteEqualNode(LinkList *L,int n){
    
    //目标: 删除单链表中绝对值相等的结点;
    //1. 开辟辅助数组p.
    int *p = alloca(sizeof(int)*n);
    LinkList r = *L;
   
    //2.数组元素初始值置空
    for (int i = 0; i < n; i++) {
        *(p+i) = 0;
    }
    
    //3.指针temp 指向首元结点
    LinkList temp = (*L)->next;
    
    //4.遍历链表,直到temp = NULL;
    while (temp!= NULL) {
        
        //5.如果该绝对值已经在结点上出现过,则删除该结点
        if (p[abs(temp->data)] == 1) {
            
            //临时指针指向temp->next
            r->next = temp->next;
            //删除temp指向的结点
            free(temp);
            //temp 指向删除结点下一个结点
            temp = r->next;
        }else
        {
            //6. 未出现过的结点,则将数组中对应位置置为1;
            p[abs(temp->data)] = 1;
            r = temp;
            //继续向后遍历结点
            temp = temp->next;
        }
    }
    
}

你可能感兴趣的:(数据结构与算法 练习(一))