<蓝桥杯软件赛>零基础备赛20周--第8周第1讲--十大排序

报名明年4月蓝桥杯软件赛的同学们,如果你是大一零基础,目前懵懂中,不知该怎么办,可以看看本博客系列:备赛20周合集
20周的完整安排请点击:20周计划
每周发1个博客,共20周(读者可以按自己的进度选“正常”和“快进”两种计划)。
每周3次集中答疑
,周三、周五、周日晚上,在QQ群上答疑:

在这里插入图片描述

文章目录

  • 1. 选择排序
  • 2. 冒泡排序
  • 3. 插入排序
  • 4. 希尔排序
  • 5. 计数排序
  • 6. 桶排序
  • 7. 基数排序
  • 8. 归并排序
  • 9. 快速排序
  • 10. 堆排序

第8周第1讲:十大排序

   排序是数据处理的基本操作,每次算法竞赛都必定用到排序。在绝大多数情况下,并不需要自己手写排序代码,而是直接用系统提供的函数sort()。
  不过,还是强烈建议学习各种排序算法,掌握原理,自己实现代码,因为各种排序算法有不同的思路,很多算法来源于这些排序算法。
  用下面的题目详解十种排序算法。
  例题:排序

1. 选择排序

  选择排序(Selection sort)是最简单直观的排序算法。
  排序的目的是什么?对n个数从小到大排序,就是把杂乱无序的n个数,放到它们应该在的位置。
  最简单的做法是:找到最小的数,放在第1个位置;找到第2小的数,放在第2个位置;…;找到第n大的数,放在第n个位置。
  这个思路就是选择排序。具体操作:
  (1)第一轮,在n个数中找到最小的数,然后与第1个位置的数交换。这样就把最小的数放到了第1个位置。
在这里插入图片描述
  (2)第二轮,在第2 ~ 第n个数中找到最小的数,然后与2个位置的数交换。
在这里插入图片描述
  …
  一共执行n轮操作,第i轮找到第i大的数,放到第i个位置。结束。
  C++代码

#include
using namespace std;
int a[100005], n;
void selection_sort() {
    for (int i = 0; i < n-1; i++) {      
        int m = i;                       //m: 记录a[i]~a[n-1]的最小数所在位置
        for (int j = i+1; j < n; j++)    //找a[i]~a[n-1]的最小数
            if (a[j] < a[m])  m = j;
        swap(a[i], a[m]);                //交换
    }
}
int main() {
    cin>>n;
    for (int i = 0; i < n; i++)  scanf("%d", &a[i]);
    selection_sort();
    for (int i = 0; i < n; i++)  printf("%d ", a[i]);
    return 0;
}

Java代码

import java.util.Scanner;
public class Main {
    static int a[] = new int[100005];
    static int n;
    public static void selection_sort() {
        for (int i = 0; i < n-1; i++) {      //找a[i]~a[n-1]的最小数
            int m = i;                       //m: 记录a[i]~a[n-1]的最小数所在位置
            for (int j = i+1; j < n; j++)
                if (a[j] < a[m])
                    m = j;
            int temp = a[i];  a[i] = a[m];  a[m] = temp;  //交换
        }
    }
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        for (int i = 0; i < n; i++)  a[i] = scanner.nextInt();
        selection_sort();
        for (int i = 0; i < n; i++)  System.out.print(a[i] + " ");
    }
}

Python代码

def selection_sort():
    global a, n
    for i in range(n-1):
        m = i
        for j in range(i+1, n):
            if a[j] < a[m]: m = j
        a[i], a[m] = a[m], a[i]    #交换
n = int(input())
a = list(map(int, input().split()))     
selection_sort()
for i in range(n):  print(a[i], end=" ")

  选择排序算法的计算量是多少?找最小的数需要比较n-1次,找第2小的必要比较n-2次,…,一共需要比较约 n 2 / 2 n^2/2 n2/2次,把它的计算复杂度记为 O ( n 2 ) O(n^2) O(n2)。看代码也能分析出来,有两重for循环,分别循环约n次,共循环 O ( n 2 ) O(n^2) O(n2)次。
  上述代码提交到判题系统,只能通过20%的测试。判题系统一般给一秒的执行时间,计算机一秒约能计算1亿次。本题若测试 n = 1 0 5 n=10^5 n=105个数,选择排序需要计算 n 2 n^2 n2=100亿次,超时。
  选择排序是一种“死脑筋”的算法,它与原数列的特征无关,不管原数列是不是有序,都得计算 O ( n 2 ) O(n^2) O(n2)次。下一个“冒泡算法”就聪明得多,如果第一轮找最大数时发现数列已经有序,就停止不再做排序计算。
  选择排序虽然低效,但也有优点:(1)简单易写;(2)不占用额外的空间,排序就在原来数列上操作。

2. 冒泡排序

  冒泡排序(Bubble sort)也是一种简单直观的排序算法。它的原理和选择排序差不多:
  第一轮,找到第1大的数,放在第n个位置;
  第二轮,找到第2大的数,放在第n-1个位置;
  …
  第n轮,找到最小的数,放到第1个位置。
  不过,与选择排序的简单粗暴相比,冒泡排序用到了“冒泡”这个小技巧。以“第一轮,找最大的数并放到第n个位置”为例,操作是:
  (1)从第1个数a[0]开始,比较a[0]和a[1],如果a[0]>a[1],交换。这一步把前2个数中的大数放到了第2个位置。
在这里插入图片描述
  (2)比较a[1]和a[2],如果a[1]>a[2],交换。这一步把前3个数中的最大数放到了第3个位置。
在这里插入图片描述
  …
  依次比较相邻的两个数,一直到最后的a[n-2]、a[n-1],就把最大的数放到了第n个位置。
  这个过程形象地比喻为“冒泡”。
  其他的数也用同样的方法处理,一共做n轮。第i轮找第i大的数并放到第i个位置,冒泡到a[i-1],就把第i大的数放到了第i个位置。

C++代码

#include
using namespace std;
int a[100005], n;
void bubble_sort() {
    for (int i = 0; i < n-1; i++) {
        bool swapped = false;   // 优化,如果某次比较没有发生交换,说明已经有序,结束
        for (int j = 0; j < n-i-1; j++)
            if (a[j] > a[j+1]) {
                swap(a[j], a[j+1]);
                swapped = true;
            }
        if (!swapped) break;     //这一轮没有发生交换,说明已经有序,结束
    }
}
int main() {
    cin >> n;
    for (int i = 0; i < n; i++)  scanf("%d", &a[i]);
    bubble_sort();
    for (int i = 0; i < n; i++)  printf("%d ", a[i]);
    return 0;
}

  冒泡算法的计算复杂度,第5行和第7行的两重for循环,计算复杂度为 O ( n 2 ) O(n^2) O(n2)
  冒泡算法可以做一点优化:若两个相邻的数已经有序,那么不用冒泡;在第i轮求第i大的数时,若一次冒泡都没有发生,说明整个数列已经有序,结束。代码第6行的swapped判断是否发生了冒泡。冒泡算法是“聪明”的排序算法。
Java代码

import java.util.Scanner;
public class Main {
    static int a[] = new int[100005];
    static int n;
    public static void bubble_sort() {
        boolean swapped;
        for (int i = 0; i < n-1; i++) {
            swapped = false;
            for (int j = 0; j < n-i-1; j++)
                if (a[j] > a[j+1]) {
                    int temp = a[j];  a[j] = a[j+1]; a[j+1] = temp;  //交换
                    swapped = true;
                }
            if (!swapped) break;
        }
    }
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        for (int i = 0; i < n; i++)  a[i] = scanner.nextInt();
        bubble_sort();
        for (int i = 0; i < n; i++)  System.out.print(a[i] + " ");
    }
}

Python代码

def bubble_sort():
    global a, n
    for i in range(n-1):
        swapped = False
        for j in range(n-i-1):
            if a[j] > a[j+1]:
                a[j], a[j+1] = a[j+1], a[j]
                swapped = True
        if not swapped: break
n = int(input())
a = list(map(int, input().split()))
bubble_sort()
for i in range(n):  print(a[i], end=" ")

3. 插入排序

  插入排序(Insertion sort)是一种“动态”算法:在一个有序数列上,新增一个数x,把它插入到有序数列中的合适位置,使数列仍保持有序。
  如何插?简单的做法是,从有序数列的最后一个数开始,逐个与x比较,若这个数比x大,就继续往前找,直到找到比x小的数,把x插到它后面。
  具体操作,以{3,7,4,5,6,1,8,2}为例:
  (1)从第一个数a[0]开始。它构成了长度为1的有序数列{a[0]}。
在这里插入图片描述
  (2)新增a[1],把它插到有序数列{a[0]}中。若a[1]≥a[0],完成。若a[1] 在这里插入图片描述
  (3)新增a[2],把它插到有序数列{a[0],a[1]}中。
在这里插入图片描述
  …
  下面是代码,概况执行过程:从a[1]开始遍历数组,将当前的数作为key,然后将它和前面的有序数列一一比较,如果发现前一个数大于key,则将它后移一位,直到找到一个前面的数不再大于key,就找到了key应该插入的位置,将key插入到该位置即可。

C++代码

#include
using namespace std;
int a[100005], n;
void insertion_sort() {
    for (int i = 1; i < n; i++) {
        int key = a[i];         //记下a[i],准备把它插到前面合适的地方
        int j = i - 1;          //i前面的数已经有序,把key插到合适位置
        while (j >= 0 && a[j] > key) {   
            a[j+1] = a[j];      //如果key比a[j]小,就把a[j]往后挪,给key腾位置
            j--;
        }
        a[j+1] = key;           //把key插到这里
    }
}
int main() {
    cin>>n;
    for (int i = 0; i < n; i++)  scanf("%d", &a[i]);
    insertion_sort();
    for (int i = 0; i < n; i++)  printf("%d ", a[i]);
    return 0;
}

  插入排序的计算复杂度取决于第5行的for循环和第8行的while循环,这是两重循环,各循环O(n)次,总计算复杂度 O ( n 2 ) O(n^2) O(n2)
  插入排序是不是和冒泡排序一样“聪明”?也就是说,如果在一个有序的数列上运行插入排序算法,需要计算多少次?此时第8行的while的判断条件 a[j] > key始终不成立,while内的第9、10行不会执行,而第12行实际上就是a[i]=key,没有任何变化。那么for、while这两重循环实际上变成了只有for一个循环,一共计算O(n)次即结束。所以插入排序和冒泡排序一样“聪明”。
Java代码

import java.util.Scanner;
public class Main {
    static int a[] = new int[100005];
    static int n;
    public static void insertion_sort() {
        for (int i = 1; i < n; i++) {
            int key = a[i];
            int j = i - 1;
            while (j >= 0 && a[j] > key) {
                a[j+1] = a[j];
                j--;
            }
            a[j+1] = key;
        }
    }
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        for (int i = 0; i < n; i++)  a[i] = scanner.nextInt();
        insertion_sort();
        for (int i = 0; i < n; i++)  System.out.print(a[i] + " ");
    }
}

Python代码

def insertion_sort():
    global a, n
    for i in range(1, n):
        key = a[i]
        j = i - 1
        while j >= 0 and a[j] > key:
            a[j+1] = a[j]
            j -= 1
        a[j+1] = key
n = int(input())
a = list(map(int, input().split()))
insertion_sort()
for i in range(n):  print(a[i], end=" ")

   下一节的希尔排序是对插入排序的优化,其核心思想是让数列尽量有序,从而减少while循环。

4. 希尔排序

  希尔排序(Shell sort)是一种基于插入排序的高效算法。
  先给出代码,可以看到,shell_sort()仅仅是分多次做插入排序insertation_sort()。代码的关键处是称为“排序间距”的变量gap,通过多轮gap操作,减少了插入排序时的while循环的计算。

C++代码

#include
using namespace std;
int a[100005], n;
void insertion_sort(int gap) {         //插入排序
    for (int i = gap; i < n; i++){
        int key = a[i];
        int j = i-1;
        while(j >= gap-1 && a[j-gap+1] > key){
            a[j+1] = a[j-gap+1];
            j -= gap;       //测试计算量,在这里统计: cnt++
        }
        a[j+1] = key;
    }
}
void shell_sort() {   
    for (int gap = n/2; gap > 0; gap /= 2)
        insertion_sort(gap);
}
int main() {
    cin>>n;
    for (int i = 0; i < n; i++)  scanf("%d", &a[i]);
    shell_sort();
    for (int i = 0; i < n; i++)  printf("%d ", a[i]);
    return 0;
}

  以int a[]={8, 7, 6, 5, 4, 3, 2, 1}这8个数从小到大排序为例,说明希尔排序的步骤。
  (1)gap = 8/2 = 4,对间距为4的数排序。共有4组数的间距为4,这四组数分别是{8, 4}、{7, 3}、{6, 2}、{5, 1}。分别在这4组数内部做插入排序。例如{8, 4}做插入排序结果是{4, 8}。在这一轮,每组内的数做插入排序时都要进入代码第8行的while执行交换操作,共执行4次。经过这一轮操作,较大的数挪到了右边,更靠近它们排序后的终止位置。
在这里插入图片描述
  (2)gap = 4/2 = 2,对间距为2的数排序。共有2组数的间距为2,分别是{4, 2, 8, 6}、{3, 1, 7, 5}。分别做插入排序,例如{4, 2, 8, 6}做插入排序的结果是{2, 4, 6, 8}。在这一轮,每组内的数做插入排序时,有些不需要进入代码第8行的while。例如处理8时,它前面的2、4已经排好序且更小,8不用做什么操作。这就是上一轮gap=4的排序操作带来的好处。
在这里插入图片描述
  (3)gap = 2/2 = 1,对间距为1的数排序,实际上gap=1的希尔排序就是基本的插入排序。由于前2轮的操作,到这一轮有很多数不用进入代码第8行的while,例如{4, 6, 8}这3个数。即使进入了while,也只需做极少的交换操作,例如处理到{5}时,它前面已经得到{1, 2, 3, 4, 6},那么{5}只需要插到{6}前面即可。
在这里插入图片描述
  希尔排序在多大程度上改善了插入排序?可以直接对比两个代码的计算量。定义一个全局变量cnt,在insertion_sort()的while中累加cnt,统计进入了多少次while。输入数列{8, 7, 6, 5, 4, 3, 2, 1},分别执行上一节的插入排序和这一节的希尔排序,得插入排序cnt = 28次,希尔排序cnt = 12。希尔排序显然好很多。
  根据严格的算法分析,希尔排序的计算复杂度约为 O ( n 1.5 ) O(n^{1.5}) O(n1.5)。当 n = 1 0 5 n = 10^5 n=105时,计算量约3000万次,远远小于 O ( n 2 ) O(n^2) O(n2)的100亿次。
  最后概况希尔排序的思路。希尔排序是一种基于插入排序的排序算法,它将一个序列分成若干个子序列,对每个子序列使用插入排序,最后再对整个序列使用一次插入排序。函数shell_sort()使用gap对数组进行分组,然后对每个子序列使用插入排序,最后将整个序列使用插入排序。在插入排序的过程中,每次将元素插入到已经排好序的序列中,而这个已经排好序的序列是由前面的插入排序操作得到的,每次操作都相当于将元素插入到一个较小的序列中,因此可以更快地将元素插入到正确的位置上。

Java代码

import java.util.Scanner;
public class Main {
    static int a[] = new int[100005];
    static int n;
    public static void insertion_sort(int gap) {
        for (int i = gap; i < n; i++){
            int key = a[i];
            int j = i-1;
            while(j >= gap-1 && a[j-gap+1] > key){
                a[j+1] = a[j-gap+1];
                j -= gap;
            }
            a[j+1] = key;
        }
    }
    public static void shell_sort() {
        for (int gap = n/2; gap > 0; gap /= 2)
            insertion_sort(gap);
    }
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        for (int i = 0; i < n; i++)  a[i] = scanner.nextInt();
        shell_sort();
        for (int i = 0; i < n; i++)  System.out.print(a[i] + " ");
    }
}

Python代码

def insertion_sort(gap):
    global a, n
    for i in range(gap, n):
        key = a[i]
        j = i-1
        while j >= gap-1 and a[j-gap+1] > key:
            a[j+1] = a[j-gap+1]
            j -= gap
        a[j+1] = key
def shell_sort():   
    for gap in range(n//2, 0, -1):  insertion_sort(gap)
n = int(input())
a = list(map(int, input().split()))
shell_sort()
for i in range(n):  print(a[i], end=" ")

5. 计数排序

  计数排序(Counting Sort)是基于哈希思想的一种排序算法,它使用一个额外的数组来统计每个数出现的次数,然后基于次数输出排序后的数组。
  以数列a[] = {5,2,7,3,4,3}为例说明计数排序的操作步骤。
  (1)找到数列的最大值7,建计数数组cnt[8];
  (2)把数列中的每个数看成cnt[i]的下标i,对应的cnt[i]计数。例如{5}对应cnt[5]=1,{2}对应cnt[2]=1,2个{3}对应cnt[3]=2,等等。
在这里插入图片描述
  (3)遍历cnt[],若cnt[i]=k,输出k次i。输出结果就是排序结果。
  概况地说,计数排序是一种非比较性的排序算法,它利用元素的值作为键值确定元素在序列中出现的次数,从而实现排序。

C++代码

#include
using namespace std;
int a[100005], n;
void counting_sort() {
    int i;
    int max = a[0];
    for (i = 1; i < n; i++)        //找到最大值
        if (a[i] > max)   max = a[i];
    int* cnt = (int*) calloc(max+1, sizeof(int));  //建数组cnt[]
    for (i = 0; i < n; i++)  cnt[a[i]]++;          //把a[i]放到对应的空间里
    i = 0;
    for (int j = 0; j <= max; j++)                 //输出排序的结果
        while (cnt[j] > 0){
            a[i++] = j;
            cnt[j]--;
        }
    free(cnt);
}
int main() {
    cin>>n;
    for (int i = 0; i < n; i++)  scanf("%d", &a[i]);
    counting_sort();
    for (int i = 0; i < n; i++)  printf("%d ", a[i]);
    return 0;
}

  该函数首先遍历数组,找到数组中的最大值max,然后创建计数数组cnt[],大小为 max+1,用于存储元素出现的次数。然后遍历数组,把每个数的出现次数存储在计数数组中。最后遍历计数数组,将数组中的元素按照次数从小到大依次输出,从而得到一个有序数组。
  计数排序的时间复杂度取决于第12行的for循环,共循环max次,计算量由max决定。
  这使得计数排序的应用场景非常狭窄,只适合“小而紧凑”的数列,当所有的数值都不太大,且均匀分布时,计数排序才有好的效果。例如 n = 1 0 5 n=10^5 n=105,且 0 < a [ i ] < 1 0 5 00<a[i]<105时,效率极高,可以在O(n)的时间内排序。
  如果数列的数值很大,就不适合用计数排序。此时需要创建极大的数组cnt[],不仅浪费空间,而且计算时间极长。例如对{5, 1 0 9 10^9 109}排序,虽然只有2个数,却需要建长度为 1 0 9 10^9 109=1G的数组,且需要在代码第12行循环 1 0 9 10^9 109次。
  代码提交到判题系统,有40%的测试返回Memory Limit Exceeded,说明代码对这40%的测试数据排序时使用的空间超出了内存限制。
Java代码

import java.util.Scanner;
public class Main {
    static int a[] = new int[100005];
    static int n;
    public static void counting_sort() {
        int i;
        int max = a[0];
        for (i = 1; i < n; i++)
            if (a[i] > max)   max = a[i];
        int[] cnt = new int[max+1];
        for (i = 0; i < n; i++)  cnt[a[i]]++;
        i = 0;
        for (int j = 0; j <= max; j++)
            while (cnt[j] > 0){
                a[i++] = j;
                cnt[j]--;
            }
    }
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        for (int i = 0; i < n; i++)  a[i] = scanner.nextInt();
        counting_sort();
        for (int i = 0; i < n; i++)  System.out.print(a[i] + " ");
    }
}

Python代码

def counting_sort():
    global a, n
    max_num = max(a)
    cnt = [0] * (max_num+1)
    for i in range(n):  cnt[a[i]] += 1
    i = 0
    for j in range(max_num+1):
        while cnt[j] > 0:
            a[i] = j
            i += 1
            cnt[j] -= 1
n = int(input())
a = list(map(int, input().split()))
counting_sort()
for i in range(n):  print(a[i], end=" ")

6. 桶排序

  桶排序(Bucket sort)是分治思想的应用,它的要点是:
  (1)有k个桶,把要排序的n个数尽量均匀分到每个桶中;
  (2)要求桶之间也是有序的,即第i个桶内所有的数小于第i+1个桶内所有的数;
  (3)在每个桶内部排序;
  (4)最后把所有的桶合起来,就是排序的结果。
  例如有100个数,这些数的大小在1~100之间,把它们分到10个桶中,第1个桶放1~10内的数,第2个桶放11~20内的数,…,等等。然后分别在每个桶内排序,最后把所有的桶的数合起来输出,就是排序的结果。
  为什么分成多个桶然后在各桶内排序,能提高效率?这就是分治的威力,下面做个简单分析。设有一个排序算法,计算复杂度为 O ( n 2 ) O(n^2) O(n2)。把这n个数分到k个桶中,每个桶装 n k \frac{n}{k} kn个数,且第i个桶的所有数小于第i+1个桶的所有数。每个桶内排序的计算量是 n 2 k 2 \frac{n^2}{k^2} k2n2,k个桶的总计算量是 k × n 2 k 2 = n 2 k k\times\frac{n^2}{k^2}=\frac{n^2}{k} k×k2n2=kn2。所以结论是,利用k个桶进行分治,能把原来 O ( n 2 ) O(n^2) O(n2)的计算量减少到 O ( n 2 k ) O(\frac{n^2}{k}) O(kn2),优化了k倍。
  不过,桶排序并不是一个简单的算法,它的性能取决于:
  (1)桶的数量k。要求k≤n,极端情况下k=n,且一个桶内只有一个数,那么总计算量就减少到了O(n),达到了最优的计算复杂度。但是太多的桶可能需要大量的存储空间,所以需要设定一个合适的k。
  (2)保证桶之间也是有序的,即让第i个桶的所有数小于第i+1个桶的所有数。简单的做法是按数字的大小分到每个桶里。例如数的大小在1~100之间,设置k=10个桶,第1个桶放1~10内的数,第2个桶放11~20内的数,…,等等。这样桶之间就有序了。但是这个简单的方法可能导致分布不均衡,有些桶内数太少,有些桶内数太多。
  (3)快速地把n个数分开放到k个桶中。桶排序的总时间包括两部分:把n个数分到k个桶的时间,以及分别在k个桶内排序的时间。如果前者耗时太长,也影响桶排序的性能。
  (4)均匀地把n个数分开放到k个桶中。只有均匀分布,才能发挥分治的威力。而极端情况下,有可能所有的数都分到了1个桶里,其他桶都是空的,等于没有分桶。例如100个数,第1个数是1,其他数都在90~100之间,把这100个数分到10个桶里,第1个桶放1~10的数,第2个桶放11~20内的数,…,第10个桶放90~100的数,那么结果是第1个桶内有1个数,第10个桶有99个数,其他桶是空的。这样的分桶毫无意义。所以需要设计一个合理的分桶算法。
  (5)桶内排序。在桶内的排序,选用适合的算法会更高效。
   由于上述原因,桶排序不是一个简单的算法,而是多个技术的综合,所以本节没有给出代码。
  上一节的计数排序可以看作桶排序的一个特例,此时k远远大于n,大部分桶是空的。

7. 基数排序

  基数排序(Radix sort)是一种非比较性的排序算法,它不是直接比较各数据的大小,而是按照数据的位数依次进行排序。
  “基数”指的是每个元素的进制位上的取值范围。例如,对于十进制数,每个元素的进制位上的取值范围是0~9,因此基数为10;对于二进制数,每个元素的进制位上的取值范围是0~1,因此基数为2。
  有两种基数排序:最低位优先法 (LSD, Least Significant Digit first)、最高位优先法 (MSD, Most Significant Digit first)。这里介绍较为简单的LSD基数排序。
  LSD基数排序是一种反常识的排序方法,它不是先比较高位再比较低位,而是反过来,先比较低位再比较高位。例如排序{5, 47, 23, 19, 17, 31}。
  第1步:先按个位的大小排序,得到{31, 23, 05, 47, 17, 19}。
  第2步:再按十位的大小排序,得到{05, 17, 19, 23, 31, 47}。其中5只有个位,把它的十位补0。基数排序需要将所有待比较的数值统一为同样的数位长度,如果某些数的位不够,在前面补零即可。
  因为所有数字中最大的只有两位,所以只需2步就结束,得到有序排列。
  更特别的是,上述操作并不是用比较的方法得到的,而是用“哈希”的思路:直接把数字放到对应的“桶”里。有10个桶,分别标记为0~9。第1步按个位的数字放,第2步按十位的数字放。下表中第2步得到的序列就是结果。
在这里插入图片描述

  基数排序的复杂度:n个数,每个数有d位(例如上面例子的17 ~ 47,都是2位数),每一位有k种可能(十进制,0~9共十种情况)。复杂度是O(d*(n+k)),存储空间是O(n+k)。例如对长度10000的字符串进行一次后缀排序,n = 10000,d ≤ 5,k = 10,复杂度d*(n+k) ≈ 10000*5。而一次快排的复杂度nlogn ≈ 10000*13。
  对比快速排序等排序方法,基数排序在d比较小的情况下,即所有的数字差不多大时,是更好的方法。如果d比较大,基数排序并不比快速排序更好。
  LSD基数排序也可以看成桶排序的一个特例,上面处理十进制的0~9,基数为10,就是10个桶。
  当基数为其他数值时,桶的数量也不同。例如:
  (1)把数字看成二进制,每一位是0~1,基数为2,有2个桶。
  (2)把数字看成二进制,并且把它按每16位划分,例如数字0xE1BE13DC34,划分成00E1-BE13-DC34,16位二进制范围0~65535,基数为65536,有65536个桶。这样做的好处是可以用位操作来处理,速度稍快一些。
  (3)对字符串排序,一个字符串的一个字符是char型,8位二进制范围0~255,基数256,就是256个桶。
  下面给出例题的LSD基数排序的代码。函数radix_sort()首先遍历数组,找到数组中的最大值max,然后使用exp记录当前排序的位数,从个位开始,依次按照位数进行排序,直到最高位。在每次排序中,使用计数排序的方法,将元素分配到桶中,然后按照桶的顺序将元素重新排序。最后将排序后的数组复制到原数组中。

C++代码

#include
using namespace std;
int a[100005], tmp[100005],n;
void radix_sort() {
    int exp = 1;
    int max = a[0];
    for (int i = 1; i < n; i++) //找出最大值,目的是找到最大数有多少位
        if (a[i] > max)   max = a[i];
    while (max / exp > 0) { //从个位开始,一直到最高位
        int bucket[10] = {0};
        for (int i = 0; i <  n; i++)   bucket[(a[i] / exp) % 10]++;
        for (int i = 1; i < 10; i++)   bucket[i] += bucket[i-1];
        for (int i = n-1; i >= 0; i--) {
            int k = (a[i] / exp) % 10;
            tmp[bucket[k]-1] = a[i];
            bucket[k]--;
        }
        for (int i = 0; i < n; i++) a[i] = tmp[i];
        exp *= 10;
    }
}
int main() {
    cin>>n;
    for (int i = 0; i < n; i++)  scanf("%d", &a[i]);
    radix_sort();
    for (int i = 0; i < n; i++)  printf("%d ", a[i]);
    return 0;
}

Java代码

import java.util.Scanner;
public class Main {
    static int a[] = new int[100005];
    static int tmp[] = new int[100005];
    static int n;
    public static void radix_sort() {
        int exp = 1;
        int max = a[0];
        for (int i = 1; i < n; i++)
            if (a[i] > max)   max = a[i];
        while (max / exp > 0) {
            int bucket[] = new int[10];
            for (int i = 0; i <  n; i++)   bucket[(a[i] / exp) % 10]++;
            for (int i = 1; i < 10; i++)   bucket[i] += bucket[i-1];
            for (int i = n-1; i >= 0; i--) {
                int k = (a[i] / exp) % 10;
                tmp[bucket[k]-1] = a[i];
                bucket[k]--;
            }
            for (int i = 0; i < n; i++) a[i] = tmp[i];
            exp *= 10;
        }
    }

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        for (int i = 0; i < n; i++)  a[i] = scanner.nextInt();
        radix_sort();
        for (int i = 0; i < n; i++)  System.out.print(a[i] + " ");
    }
}

Python代码

def radix_sort():
    global a, n    
    exp = 1
    max_num = max(a)
    tmp = [0] * len(a) 
    while max_num // exp > 0:
        bucket = [0] * 10
        for i in range(n):     bucket[(a[i] // exp) % 10] += 1
        for i in range(1, 10): bucket[i] += bucket[i-1]
        for i in range(n-1, -1, -1):
            k = (a[i] // exp) % 10
            tmp[bucket[k]-1] = a[i]
            bucket[k] -= 1
        for i in range(n):    a[i] = tmp[i]
        exp *= 10
n = int(input())
a = list(map(int, input().split()))
radix_sort()
for i in range(n):  print(a[i], end=" ")

  基数排序的计算复杂度证明,参考《算法导论》:

8. 归并排序

  归并排序(Merge sort)和下一小节的快速排序是分治法思想的应用,极为精美。学习它们,对于理解分治法、提高算法思维能力,十分有帮助。
  先思考一个问题:如何用分治思想设计排序算法?
  根据分治法的分解、解决、合并三步骤,具体思路如下:
  (1)分解。把原来无序的数列,分成两部分;对每个部分,再继续分解成更小的两部分……在归并排序中,只是简单地把数列分成两半。在快速排序中,是把序列分成左右两部分,左部分的元素都小于右部分的元素;分解操作是快速排序的核心操作。
  (2)解决。分解到最后不能再分解,排序。
  (3)合并。把每次分开的两个部分合并到一起。归并排序的核心操作是合并,其过程类似于交换排序。快速排序并不需要合并操作,因为在分解过程中,左右部分已经是有序的。
  下图的例子给出了归并排序的操作步骤。初始数列经过3趟归并之后,得到一个从小到大的有序数列。
<蓝桥杯软件赛>零基础备赛20周--第8周第1讲--十大排序_第1张图片
  归并排序的主要操作:
  (1)分解。把初始序列分成长度相同的左右两个子序列,然后把每个子序列再分成更小的两个子序列……,直到子序列只包含1个数。这个过程用递归实现,上图中的第一行是初始序列,每个数是一个子序列,可以看成递归到达的最底层。
  (2)求解子问题,对子序列排序。最底层的子序列只包含1个数,其实不用排序。
  (3)合并。归并两个有序的子序列,这是归并排序的主要操作,过程如下图。例如图 (1)中, i和j分别指向子序列{13, 94, 99}和{34, 56}的第1个数,进行第一次比较,发现a[i] < a[j],把a[i]放到临时空间b[]中。总共经过四次比较,得到b[] = {13, 34 ,56, 94, 99}。
<蓝桥杯软件赛>零基础备赛20周--第8周第1讲--十大排序_第2张图片
  下面分析归并排序的计算复杂度。对n个数进行归并排序:(1)需要logn趟归并;(2)在每一趟归并中,有很多次合并操作,一共需要O(n)次比较。总计算复杂度是O(nlogn)。
  空间复杂度:由于需要一个临时的b[]存储结果,所以空间复杂度是O(n)。

C++代码

#include
using namespace std;
int a[100005], b[100005], n;
void Merge(int L, int mid, int R){
     int i=L, j = mid+1, t=0;
     while(i <= mid && j <= R){
          if(a[i] > a[j])  b[t++] = a[j++];
          else b[t++]=a[i++];
     }
   //一个子序列中的数都处理完了,另一个还没有,把剩下的直接复制过来:
    while(i <= mid)   b[t++]=a[i++];
    while(j <= R)     b[t++]=a[j++];
    for(i=0; i<t; i++)  a[L+i] = b[i];     //把排好序的b[]复制回a[]
}
void Mergesort(int L, int R){
    if(L<R){
         int  mid = (L+R)/2;                  //平分成两个子序列
         Mergesort(L, mid);
         Mergesort(mid+1, R);
         Merge(L, mid, R);                    //合并
    }
}
int main() {
    cin>>n;
    for (int i = 0; i < n; i++)  scanf("%d", &a[i]);
    Mergesort(0,n-1);
    for (int i = 0; i < n; i++)  printf("%d ", a[i]);
    return 0;
}

Java代码

import java.util.Scanner;
public class Main {
    static int a[] = new int[100005];
    static int b[] = new int[100005];
    static int n;
    public static void Merge(int L, int mid, int R){
         int i=L, j = mid+1, t=0;
         while(i <= mid && j <= R){
              if(a[i] > a[j])  b[t++] = a[j++];
              else b[t++]=a[i++];
         }
         while(i <= mid)   b[t++]=a[i++];
         while(j <= R)     b[t++]=a[j++];
         for(i=0; i<t; i++)  a[L+i] = b[i];
    }
    public static void Mergesort(int L, int R){
        if(L<R){
             int  mid = (L+R)/2;
             Mergesort(L, mid);
             Mergesort(mid+1, R);
             Merge(L, mid, R);
        }
    }
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        for (int i = 0; i < n; i++)  a[i] = scanner.nextInt();
        Mergesort(0,n-1);
        for (int i = 0; i < n; i++)  System.out.print(a[i] + " ");
    }
}

Python代码

def Merge(L, mid, R):
     global a, b
     i=L
     j = mid+1
     t=0
     while(i <= mid and j <= R):
          if(a[i] > a[j]):
              b[t] = a[j]
              j += 1
          else:
              b[t] = a[i]
              i += 1
          t += 1
     while(i <= mid):
          b[t] = a[i]
          i += 1
          t += 1
     while(j <= R):
          b[t] = a[j]
          j += 1
          t += 1
     for i in range(t):  a[L+i] = b[i]
def Mergesort(L, R):
    if L < R:
         mid = (L+R)//2
         Mergesort(L, mid)
         Mergesort(mid+1, R)
         Merge(L, mid, R)
n = int(input())
a = list(map(int, input().split()))
b = [0] * len(a)
Mergesort(0,n-1)
for i in range(n):  print(a[i], end=" ")

9. 快速排序

  上一节提到,快速排序(Quick sort)和归并排序都是分治法的应用。
  快速排序的思路是:把序列分成左右两部分,使得左边所有的数都比右边的数小;递归这个过程,直到不能再分为止。如何把序列分成左右两部分?最简单的办法是设定两个临时空间X、Y和一个基准数t;检查序列中所有的元素,比t小的放在X中,比t大的放在Y中。不过,其实不用这么麻烦,直接在原序列上操作就行了,不需要使用临时空间X、Y。
  直接在原序列上进行划分的方法有很多种,下面的图示介绍了一种很容易操作的方法:
<蓝桥杯软件赛>零基础备赛20周--第8周第1讲--十大排序_第3张图片
  下面分析复杂度。
  每一次划分,都把序列分成了左右两部分,在这个过程中,需要比较所有的元素,有O(n)次。如果每次划分是对称的,也就是说左右两部分的长度差不多,那么一共需要划分O(logn)次。总复杂度O(nlogn)。
  如果划分不是对称的,左部分和右部分的数量差别很大,那么复杂度会高一些。在极端情况下,例如左部分只有1个数,剩下的全部都在右部分,那么最多可能划分n次,总复杂度是 O ( n 2 ) O(n^2) O(n2)。所以,快速排序的效率和数据本身有关。
  不过,一般情况下快速排序效率很高,甚至比归并排序更好。读者可以观察到,下面给出的快速排序的代码比归并排序的代码更简洁,代码中的比较、交换、拷贝操作很少。 快速排序几乎是目前所有排序法中速度最快的方法。STL的sort()函数就是基于快速排序算法的,并针对快速排序的缺点做了很多优化。
C++代码

#include
using namespace std;
int a[100005],n;
void qsort(int L,int R){
	int i=L,j=R;
	int key=a[(L+R)/2];
	while(i<=j)	{
		while(a[i]<key)	i++;
		while(a[j]>key) j--;
		if(i<=j){
			swap(a[i],a[j]);
			i++; j--;
		}
	}
	if(j>L) qsort(L,j);
	if(i<R) qsort(i,R);
}
int main(){
    cin>>n;
	for(int i=0;i<n;i++) scanf("%d",&a[i]);
	qsort(0,n-1);
	for(int i=0;i<n;i++) printf("%d ",a[i]);
	return 0;
}

Java代码

import java.util.Scanner;
public class Main {
    static int[] a = new int[100005];
    static int n;
    public static void qsort(int L, int R) {
        int i = L, j = R;
        int key = a[(L + R) / 2];
        while (i <= j) {
            while (a[i] < key) i++;
            while (a[j] > key) j--;
            if (i <= j) {
                int temp = a[i];
                a[i] = a[j];
                a[j] = temp;
                i++;
                j--;
            }
        }
        if (j > L)   qsort(L, j);
        if (i < R)   qsort(i, R);
    }
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        n = input.nextInt();
        for (int i = 0; i < n; i++)    a[i] = input.nextInt();
        qsort(0, n - 1);
        for (int i = 0; i < n; i++)    System.out.print(a[i] + " ");
    }
}

Python代码

def qsort(L, R):
    i, j = L, R
    key = a[(L + R) // 2]
    while i <= j:
        while a[i] < key:  i += 1
        while a[j] > key:  j -= 1
        if i <= j:
            a[i], a[j] = a[j], a[i]
            i += 1
            j -= 1
    if j > L:  qsort(L, j)
    if i < R:  qsort(i, R)
n = int(input())
a = list(map(int, input().split()))
qsort(0,n-1)
for i in range(n):  print(a[i], end=" ")

10. 堆排序

  堆排序(heap sort)利用二叉堆的属性来排序。二叉堆是一棵二叉树,如果是一棵最小堆,那么树根是最小值。把树根取出后,新的树根仍然是剩下的树上的最小值。首先把需要排序的n个数放进二叉堆,然后依次取出树根,就从小到大排好了序。由于把数放进二叉堆和取出二叉堆,计算复杂度都是O(logn)的,所以n个数的总复杂度是O(nlogn)的。
  由于自己编程实现二叉堆比较麻烦,这里直接使用优先队列。优先队列是用二叉堆实现的。
C++代码

#include
using namespace std;
int main() {
    int n;    cin >> n;
    priority_queue<int, vector<int>, greater<int>> pq;  // 优先队列,是小根堆
    for (int i = 0; i < n; i++) {
        int a;   cin >> a;
        pq.push(a);                // 将输入的数插入小根堆
    }
    while (!pq.empty()) {
        cout << pq.top() << " ";   // 依次输出堆顶元素(树根),就是从小到大输出
        pq.pop();                  // 弹出堆顶元素
    }
    return 0;
}

Java代码

import java.util.PriorityQueue;
import java.util.Scanner;
public class Main {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        int n = input.nextInt();
        PriorityQueue<Integer> pq = new PriorityQueue<Integer>();
        for (int i = 0; i < n; i++) {
            int a = input.nextInt();
            pq.offer(a);
        }
        while (!pq.isEmpty())
            System.out.print(pq.poll() + " ");
    }
}

Python代码

import queue
n = int(input())
a = list(map(int, input().split()))
pq = queue.PriorityQueue()
for i in range(n):  pq.put(a[i])
while not pq.empty():  print(pq.get(), end=' ')

你可能感兴趣的:(蓝桥杯软件赛零基础备赛20周,蓝桥杯)