Redis 自带了一个叫 redis-benchmark
的工具来模拟 N 个客户端同时发出 M 个请求。 (类似于 Apache ab 程序)。你可以使用 redis-benchmark -h 来查看基准参数。
以下参数被支持:
Usage: redis-benchmark [-h ] [-p ] [-c ] [-n [-k ]
-h Server hostname (default 127.0.0.1)
-p Server port (default 6379)
-s Server socket (overrides host and port)
-a Password for Redis Auth
-c Number of parallel connections (default 50)
-n Total number of requests (default 100000)
-d Data size of SET/GET value in bytes (default 2)
-dbnum SELECT the specified db number (default 0)
-k 1=keep alive 0=reconnect (default 1)
-r Use random keys for SET/GET/INCR, random values for SADD
Using this option the benchmark will expand the string __rand_int__
inside an argument with a 12 digits number in the specified range
from 0 to keyspacelen-1. The substitution changes every time a command
is executed. Default tests use this to hit random keys in the
specified range.
-P Pipeline requests. Default 1 (no pipeline).
-q Quiet. Just show query/sec values
--csv Output in CSV format
-l Loop. Run the tests forever
-t Only run the comma separated list of tests. The test
names are the same as the ones produced as output.
-I Idle mode. Just open N idle connections and wait.
你需要在基准测试之前启动一个 Redis 实例。
一般这样启动测试:
redis-benchmark -q -n 100000
这个工具使用起来非常方便,同时你可以使用自己的基准测试工具, 不过开始基准测试时候,我们需要注意一些细节。
你不必每次都运行 redis-benchmark 默认的所有测试。 使用 -t 参数可以选择你需要运行的测试用例,比如下面的范例:
$ redis-benchmark -t set,lpush -n 100000 -q
SET: 74239.05 requests per second
LPUSH: 79239.30 requests per second
在上面的测试中,我们只运行了 SET 和 LPUSH 命令, 并且运行在安静模式中(使用 -q 参数)。 也可以直接指定命令来直接运行,比如下面的范例:
$ redis-benchmark -n 100000 -q script load "redis.call('set','foo','bar')"
script load redis.call('set','foo','bar'): 69881.20 requests per second
默认情况下面,基准测试使用单一的 key。在一个基于内存的数据库里, 单一 key 测试和真实情况下面不会有巨大变化。当然,使用一个大的 key 范围空间, 可以模拟现实情况下面的缓存不命中情况。
这时候我们可以使用 -r 命令。比如,假设我们想设置 10 万随机 key 连续 SET 100 万次,我们可以使用下列的命令:
$ redis-cli flushall
OK
$ redis-benchmark -t set -r 100000 -n 1000000
====== SET ======
1000000 requests completed in 13.86 seconds
50 parallel clients
3 bytes payload
keep alive: 1
99.76% `<=` 1 milliseconds
99.98% `<=` 2 milliseconds
100.00% `<=` 3 milliseconds
100.00% `<=` 3 milliseconds
72144.87 requests per second
$ redis-cli dbsize
(integer) 99993
默认情况下,每个客户端都是在一个请求完成之后才发送下一个请求 (benchmark 会模拟 50 个客户端除非使用 -c 指定特别的数量), 这意味着服务器几乎是按顺序读取每个客户端的命令。Also RTT is payed as well.
真实世界会更复杂,Redis 支持 /topics/pipelining,使得可以一次性执行多条命令成为可能。 Redis pipelining 可以提高服务器的 TPS。 下面这个案例是在 Macbook air 11” 上使用 pipelining 组织 16 条命令的测试范例:
$ redis-benchmark -n 1000000 -t set,get -P 16 -q
SET: 403063.28 requests per second
GET: 508388.41 requests per second
记得在多条命令需要处理时候使用 pipelining。
第一点是显而易见的:基准测试的黄金准则是使用相同的标准。 用相同的任务量测试不同版本的 Redis,或者用相同的参数测试测试不同版本 Redis。 如果把 Redis 和其他工具测试,那就需要小心功能细节差异。
一个普遍的误解是 redis-benchmark 特意让基准测试看起来更好, 所表现出来的数据像是人造的,而不是真实产品下面的。
Redis-benchmark 程序可以简单快捷的对给定硬件条件下面的机器计算出性能参数。 但是,通常情况下面这并不是 Redis 服务器可以达到的最大吞吐量。 事实上,使用 pipelining 和更快的客户端(hiredis)可以达到更大的吞吐量。 redis-benchmark 默认情况下面仅仅使用并发来提高吞吐量(创建多条连接)。 它并没有使用 pipelining 或者其他并行技术(仅仅多条连接,而不是多线程)。
如果想使用 pipelining 模式来进行基准测试(了达到更高吞吐量),可以使用 -P 参数。这种方案的确可以提高性能,有很多使用 Redis 的应用在生产环境中这样做。
最后,基准测试需要使用相同的操作和数据来对比,如果这些不一样, 那么基准测试是无意义的。
比如,Redis 和 memcached 可以在单线程模式下面对比 GET/SET 操作。 两者都是内存数据库,协议也基本相同,甚至把多个请求合并为一条请求的方式也类似 (pipelining)。在使用相同数量的连接后,这个对比是很有意义的。
下面这个很不错例子是在 Redis(antirez)和 memcached(dormando)测试的。
antirez 1 - On Redis, Memcached, Speed, Benchmarks and The Toilet
dormando - Redis VS Memcached (slightly better bench)
antirez 2 - An update on the Memcached/Redis benchmark
你可以发现相同条件下面最终结果是两者差别不大。请注意最终测试时候, 两者都经过了充分优化。
最后,当特别高性能的服务器在基准测试时候(比如 Redis、memcached 这类), 很难让服务器性能充分发挥,通常情况下,客户端回事瓶颈限制而不是服务器端。 在这种情况下面,客户端(比如 benchmark 程序自身)需要优化,或者使用多实例, 从而能达到最大的吞吐量。
有几个因素直接决定 Redis 的性能。它们能够改变基准测试的结果, 所以我们必须注意到它们。一般情况下,Redis 默认参数已经可以提供足够的性能, 不需要调优。
在高配置下面,可以通过调优 NIC 来获得更高性能。最高性能在绑定 Rx/Tx 队列和 CPU 内核下面才能达到,还需要开启 RPS(网卡中断负载均衡)。更多信息可以在thread 。Jumbo frames 还可以在大对象使用时候获得更高性能。
在不同平台下面,Redis 可以被编译成不同的内存分配方式(libc malloc, jemalloc, tcmalloc),他们在不同速度、连续和非连续片段下会有不一样的表现。 如果你不是自己编译的 Redis,可以使用 INFO 命令来检查内存分配方式。 请注意,大部分基准测试不会长时间运行来感知不同分配模式下面的差异, 只能通过生产环境下面的 Redis 实例来查看。
任何基准测试的一个重要目标是获得可重现的结果,这样才能将此和其他测试进行对比。
Intel(R) Xeon(R) CPU E5520 @ 2.27GHz (with pipelining)
$ ./redis-benchmark -r 1000000 -n 2000000 -t get,set,lpush,lpop -P 16 -q
SET: 552028.75 requests per second
GET: 707463.75 requests per second
LPUSH: 767459.75 requests per second
LPOP: 770119.38 requests per second
Intel(R) Xeon(R) CPU E5520 @ 2.27GHz (without pipelining)
$ ./redis-benchmark -r 1000000 -n 2000000 -t get,set,lpush,lpop -q
SET: 122556.53 requests per second
GET: 123601.76 requests per second
LPUSH: 136752.14 requests per second
LPOP: 132424.03 requests per second
Linode 2048 instance (with pipelining)
$ ./redis-benchmark -r 1000000 -n 2000000 -t get,set,lpush,lpop -q -P 16
SET: 195503.42 requests per second
GET: 250187.64 requests per second
LPUSH: 230547.55 requests per second
LPOP: 250815.16 requests per second
Linode 2048 instance (without pipelining)
$ ./redis-benchmark -r 1000000 -n 2000000 -t get,set,lpush,lpop -q
SET: 35001.75 requests per second
GET: 37481.26 requests per second
LPUSH: 36968.58 requests per second
LPOP: 35186.49 requests per second
$ redis-benchmark -n 100000
====== SET ======
100007 requests completed in 0.88 seconds
50 parallel clients
3 bytes payload
keep alive: 1
58.50% <= 0 milliseconds
99.17% <= 1 milliseconds
99.58% <= 2 milliseconds
99.85% <= 3 milliseconds
99.90% <= 6 milliseconds
100.00% <= 9 milliseconds
114293.71 requests per second
====== GET ======
100000 requests completed in 1.23 seconds
50 parallel clients
3 bytes payload
keep alive: 1
43.12% <= 0 milliseconds
96.82% <= 1 milliseconds
98.62% <= 2 milliseconds
100.00% <= 3 milliseconds
81234.77 requests per second
====== INCR ======
100018 requests completed in 1.46 seconds
50 parallel clients
3 bytes payload
keep alive: 1
32.32% <= 0 milliseconds
96.67% <= 1 milliseconds
99.14% <= 2 milliseconds
99.83% <= 3 milliseconds
99.88% <= 4 milliseconds
99.89% <= 5 milliseconds
99.96% <= 9 milliseconds
100.00% <= 18 milliseconds
68458.59 requests per second
====== LPUSH ======
100004 requests completed in 1.14 seconds
50 parallel clients
3 bytes payload
keep alive: 1
62.27% <= 0 milliseconds
99.74% <= 1 milliseconds
99.85% <= 2 milliseconds
99.86% <= 3 milliseconds
99.89% <= 5 milliseconds
99.93% <= 7 milliseconds
99.96% <= 9 milliseconds
100.00% <= 22 milliseconds
100.00% <= 208 milliseconds
88109.25 requests per second
====== LPOP ======
100001 requests completed in 1.39 seconds
50 parallel clients
3 bytes payload
keep alive: 1
54.83% <= 0 milliseconds
97.34% <= 1 milliseconds
99.95% <= 2 milliseconds
99.96% <= 3 milliseconds
99.96% <= 4 milliseconds
100.00% <= 9 milliseconds
100.00% <= 208 milliseconds
71994.96 requests per second
注意:包大小从 256 到 1024 或者 4096 bytes 不会改变结果的量级 (但是到 1024 bytes 后,GETs 操作会变慢)。同样的,50 到 256 客户端的测试结果相同。 10 个客户端时候,吞吐量会变小(译者按:总量到不了最大吞吐量)。
不同机器可以获的不一样的结果,下面是 Intel T5500 1.66 GHz 在 Linux 2.6 下面的结果:
$ ./redis-benchmark -q -n 100000
SET: 53684.38 requests per second
GET: 45497.73 requests per second
INCR: 39370.47 requests per second
LPUSH: 34803.41 requests per second
LPOP: 37367.20 requests per second
另外一个是 64 位 Xeon L5420 2.5 GHz 的结果:
$ ./redis-benchmark -q -n 100000
PING: 111731.84 requests per second
SET: 108114.59 requests per second
GET: 98717.67 requests per second
INCR: 95241.91 requests per second
LPUSH: 104712.05 requests per second
LPOP: 93722.59 requests per second
使用 unix domain socket:
$ numactl -C 6 ./redis-benchmark -q -n 100000 -s /tmp/redis.sock -d 256
PING (inline): 200803.22 requests per second
PING: 200803.22 requests per second
MSET (10 keys): 78064.01 requests per second
SET: 198412.69 requests per second
GET: 198019.80 requests per second
INCR: 200400.80 requests per second
LPUSH: 200000.00 requests per second
LPOP: 198019.80 requests per second
SADD: 203665.98 requests per second
SPOP: 200803.22 requests per second
LPUSH (again, in order to bench LRANGE): 200000.00 requests per second
LRANGE (first 100 elements): 42123.00 requests per second
LRANGE (first 300 elements): 15015.02 requests per second
LRANGE (first 450 elements): 10159.50 requests per second
LRANGE (first 600 elements): 7548.31 requests per second
使用 TCP loopback:
$ numactl -C 6 ./redis-benchmark -q -n 100000 -d 256
PING (inline): 145137.88 requests per second
PING: 144717.80 requests per second
MSET (10 keys): 65487.89 requests per second
SET: 142653.36 requests per second
GET: 142450.14 requests per second
INCR: 143061.52 requests per second
LPUSH: 144092.22 requests per second
LPOP: 142247.52 requests per second
SADD: 144717.80 requests per second
SPOP: 143678.17 requests per second
LPUSH (again, in order to bench LRANGE): 143061.52 requests per second
LRANGE (first 100 elements): 29577.05 requests per second
LRANGE (first 300 elements): 10431.88 requests per second
LRANGE (first 450 elements): 7010.66 requests per second
LRANGE (first 600 elements): 5296.61 requests per second
源自:http://www.redis.cn/topics/benchmarks.html