本文主要介绍基于OpenCV+YOLOv5实现车辆跟踪与计数的应用,并给出源码。
资源下载
基础代码和视频下载地址:
https://github.com/freedomwebtech/win11vehiclecount
main.py代码:
import cv2
import torch
import numpy as np
from tracker import *
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
cap=cv2.VideoCapture('highway.mp4')
count=0
tracker = Tracker()
def POINTS(event, x, y, flags, param):
if event == cv2.EVENT_MOUSEMOVE :
colorsBGR = [x, y]
print(colorsBGR)
cv2.namedWindow('FRAME')
cv2.setMouseCallback('FRAME', POINTS)
while True:
ret,frame=cap.read()
if not ret:
break
count += 1
if count % 3 != 0:
continue
frame=cv2.resize(frame,(1020,600))
results=model(frame)
results.pandas().xyxy[0]
cv2.imshow("FRAME",frame)
if cv2.waitKey(0)&0xFF==27:
break
cap.release()
cv2.destroyAllWindows()
tracker.py代码:
import math
class Tracker:
def __init__(self):
# Store the center positions of the objects
self.center_points = {}
# Keep the count of the IDs
# each time a new object id detected, the count will increase by one
self.id_count = 0
def update(self, objects_rect):
# Objects boxes and ids
objects_bbs_ids = []
# Get center point of new object
for rect in objects_rect:
x, y, w, h = rect
cx = (x + x + w) // 2
cy = (y + y + h) // 2
# Find out if that object was detected already
same_object_detected = False
for id, pt in self.center_points.items():
dist = math.hypot(cx - pt[0], cy - pt[1])
if dist < 35:
self.center_points[id] = (cx, cy)
# print(self.center_points)
objects_bbs_ids.append([x, y, w, h, id])
same_object_detected = True
break
# New object is detected we assign the ID to that object
if same_object_detected is False:
self.center_points[self.id_count] = (cx, cy)
objects_bbs_ids.append([x, y, w, h, self.id_count])
self.id_count += 1
# Clean the dictionary by center points to remove IDS not used anymore
new_center_points = {}
for obj_bb_id in objects_bbs_ids:
_, _, _, _, object_id = obj_bb_id
center = self.center_points[object_id]
new_center_points[object_id] = center
# Update dictionary with IDs not used removed
self.center_points = new_center_points.copy()
return objects_bbs_ids
下载测试视频highway.mp4(download.txt中有链接):
安装ultralytics:
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
实现车辆检测
添加代码查看YoloV5模型检测输出信息:
添加车辆检测结果绘制:
实现车辆跟踪
将车辆矩形坐标保存到list中:
添加对象跟踪:
车辆跟踪效果:
实现车辆计数
【1】划定一个多边形区域(黄色),车辆经过此区域则计数;
cv2.polylines(frame,[np.array(areal,np.int32)],True,(0,255,255),3)
【2】绿色点标注车辆矩形框右下角坐标点,如下图:
cv2.circle(frame,(x3,y3),4,(0,255,0),-1)
【3】计数原理:判断绿色点是否在黄色四边形内,如果在内计数+1
计算点到多边形的距离使用的是OpenCV中pointPolygonTest函数:
当result > 0表示点在轮廓内,也就是车辆在多边形内。此时将车辆id编号添加到集合area_1中,然后通过len(area_1)作为车辆计数值。
注意:这里为什么不直接用count += 1来计算数量?如果用count += 1会造成很多重复计数,而代码中利用了python集合的特性,add函数添加元素时,如果元素已经存在,则不重复添加,有效的避免了重复计数问题。
最终效果如下: