学习文档地址
这里使用docker-compose来安装,方便后续迁移,Elasticserach和kibina一起安装。
配置文件有两个,一个是ES的配置文件,一个docker-compose的配置文件
下面的配置文件需要把IP修改为自己的本级IP network.publish_host
# 集群名称
cluster.name: xdx-es
# 节点名称
node.name: es-node-1
# 绑定host,0.0.0.0代表当前节点的ip
network.host: 0.0.0.0
# 设置其它节点和该节点交互的ip地址,如果不设置它会自动判断,值必须是个真实的ip地址(本机ip),修改成自己ip
network.publish_host: 192.168.2.18
# 设置对外服务的http端口,默认为9200
http.port: 9200
# 设置节点间交互的tcp端口,默认是9300
# transport.tcp.port: 9300
# 是否支持跨域,默认为false
http.cors.enabled: true
# 当设置允许跨域,默认为*,表示支持所有域名,如果我们只是允许某些网站能访问,那么可以使用正则表达式。比如只允许本地地址。 /https?:\/\/localhost(:[0-9]+)?/
http.cors.allow-origin: "*"
# 表示这个节点是否可以充当主节点
# node.master: true
# 是否充当数据节点
# node.data: true
# 所有主从节点ip:port
# discovery.seed_hosts: ["192.168.2.18:9300"] #本地只有一个节点,无法正常启动,先注释
# 这个参数决定了在选主过程中需要 有多少个节点通信 预防脑裂 N/2+1
# discovery.zen.minimum_master_nodes: 1
#初始化主节点
#cluster.initial_master_nodes: ["es-node-1"]
# 内存交换
bootstrap.memory_lock: true
# 关闭认证授权
xpack.security.enabled: false
version: '3.0'
services:
elasticsearch:
image: elasticsearch:8.3.2
container_name: elasticsearch8.3.2
hostname: elasticsearch8.3.2
privileged: true
tty: true
restart: unless-stopped
environment:
- TZ=Asia/Shanghai
- "ES_JAVA_OPTS=-Xms256m -Xmx256m"
- discovery.type=single-node
ports:
- "9200:9200"
networks:
- es_network
volumes:
- ./data/:/usr/share/elasticsearch/data
- ./plugins:/usr/share/elasticsearch/plugins
- ./config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml
kibana:
image: kibana:8.3.2
container_name: kibana8.3.2
hostname: kibana8.3.2
restart: always
privileged: true
tty: true
# volumes:
# - ./etc/localtime:/etc/timezone
# - ./etc/localtime:/etc/localtime
environment:
- TZ=Asia/Shanghai
- I18N_LOCALE=zh-CN
- XPACK_GRAPH_ENABLED=true
- TIMELION_ENABLED=true
- XPACK_MONITORING_COLLECTION_ENABLED="true"
ports:
- "5601:5601"
links:
- elasticsearch:elasticsearch
depends_on:
- elasticsearch
networks:
- es_network
networks:
es_network:
driver: bridge
完整目录如下:
在ES安装目录下运行 docker-compose up -d
在浏览器输入 http://localhost:9200/
看到如下JSON,ES安装完成
在浏览器输入 http://localhost:5601/
看到如下界面,Kibina 安装完成
其实可以简单把ES中的索引(index)理解成表,那对于表的操作,肯定就是创建表、增删字段,以及对表中数据的增删改查。
Kibana提供了操作ES的控制台,通过如下路径进入控制台
创建一个名为my-index-two
的索引,里面有三个字段
PUT /my-index-two
{
"settings": {
"number_of_shards": 1,
"number_of_replicas": 0
},
"mappings": {
"properties": {
"name": { "type": "text" },
"age": { "type": "integer" },
"tags":{
"type": "text",
"fields": {
"keyword":{
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
}
PUT /my-index-two/_mapping
{
"properties": {
"conutry": {
"type": "text"
}
}
}
# 查看索引信息
GET /_cat/indices/my-index-one?v&pretty
# 查看settings信息
GET /my-index-one/_settings
# 查看_mapping信息
GET /my-index-one/_mapping
为 my-index-two
索引,添加一条 id = 2,的数据
# PUT /index_name/_doc/_id
PUT /my-index-two/_doc/2
{
"name": "李四",
"age": "20",
"conutry": "java",
"tags": ["xxx", "你好", "zzz"]
}
查询 my-index-two 索引中,id = 2,的数据
GET /my-index-two/_doc/2
除了用id精准匹配,使用ES更多的是做高亮搜索,比如想要搜索 tags中带 你
的标签
GET /my-index-two/_search
{
"query": {
"match": {
"tags": {
"query": "你",
"fuzziness": "AUTO"
}
}
},
"highlight": {
"fields": {
"tags": {}
}
}
}
默认它的高亮是用
标签,也可以改变它使用自定义标签
GET /my-index-two/_search
{
"query": {
"match": {
"tags": {
"query": "你",
"fuzziness": "AUTO"
}
}
},
"highlight": {
"fields": {
"tags": {
"pre_tags": [""],
"post_tags": [""]
}
}
}
}
# 删除文档id为 1 的数据
DELETE /my-index-two/_doc/1
# 删除 name中带有 三 的数据
POST /my-index-two/_delete_by_query
{
"query": {
"term": {
"name": "三"
}
}
}
非SpringBoot项目使用
<dependency>
<groupId>co.elastic.clientsgroupId>
<artifactId>elasticsearch-javaartifactId>
<version>8.3.3version>
dependency>
<dependency>
<groupId>com.fasterxml.jackson.coregroupId>
<artifactId>jackson-databindartifactId>
<version>2.13.3version>
dependency>
<dependency>
<groupId>jakarta.jsongroupId>
<artifactId>jakarta.json-apiartifactId>
<version>2.1.1version>
dependency>
SpringBoot 项目使用
<dependency>
<groupId>co.elastic.clientsgroupId>
<artifactId>elasticsearch-javaartifactId>
<version>8.3.3version>
dependency>
<dependency>
<groupId>jakarta.jsongroupId>
<artifactId>jakarta.json-apiartifactId>
<version>2.1.1version>
dependency>
package com.xdx.cv.controller;
import co.elastic.clients.elasticsearch.ElasticsearchClient;
import co.elastic.clients.elasticsearch.core.*;
import co.elastic.clients.elasticsearch.core.search.Hit;
import co.elastic.clients.json.jackson.JacksonJsonpMapper;
import co.elastic.clients.transport.ElasticsearchTransport;
import co.elastic.clients.transport.rest_client.RestClientTransport;
import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import java.io.IOException;
import java.util.List;
public class Test {
public static void main(String[] args) throws IOException {
// 创建连接
RestClient restClient = RestClient.builder(new HttpHost("127.0.0.1", 9200)).build();
ElasticsearchTransport transport = new RestClientTransport(restClient, new JacksonJsonpMapper());
ElasticsearchClient elasticsearchClient = new ElasticsearchClient(transport);
System.out.println("elasticsearchClient = " + elasticsearchClient);
XdxTest build = XdxTest.builder().age(3).conutry("xxx").name("xxx").build();
// 删除数据
DeleteResponse deleteResponse = elasticsearchClient.delete(s -> s.index("my-index-two").id(build.age.toString()));
System.out.println("删除结果: " + deleteResponse.result());
// 插入数据
IndexResponse indexResponse = elasticsearchClient.index(s -> s.index("my-index-two").id(build.age.toString()).document(build));
System.out.println("新增文档结果: " + indexResponse.result());
// 构建修改文档的请求
XdxTest buildTwo = XdxTest.builder().age(3).conutry("xxxTwo").name("xxxTwo").build();
UpdateResponse<XdxTest> updateResponse = elasticsearchClient.update(e -> e
.index("my-index-two")
.id(build.age.toString())
.doc(buildTwo),
XdxTest.class
);
System.out.println("修改文档结果:" + updateResponse.result());
// 基于id查询数据
GetResponse<XdxTest> getResponse = elasticsearchClient.get(s -> s.index("my-index-two").id("2"),XdxTest.class);
System.out.println("基于id查询结果: " + getResponse.source().getConutry());
// 高亮查询
SearchResponse<XdxTest> response = elasticsearchClient.search(s -> s
.index("my-index-two")
.query(q -> q
.term(t -> t
.field("name")
.value("四"))
)
.highlight(h -> h
.fields("name", f -> f
.preTags("")
.postTags("")))
.source(source -> source
.filter(f -> f
.includes("name","id")
.excludes("")
)
),
XdxTest.class
);
List<Hit<XdxTest>> hits = response.hits().hits();
System.out.println("高亮查询结果" + hits.get(0).highlight().get("name"));
restClient.close();
}
@Data
@AllArgsConstructor
@NoArgsConstructor
@Builder
public static class XdxTest {
private String name;
private Integer age;
public String conutry;
public List<String> tags;
}
}
执行结果
elasticsearchClient = co.elastic.clients.elasticsearch.ElasticsearchClient@3d36e4cd
删除结果: Deleted
新增文档结果: Created
修改文档结果:Updated
基于id查询结果: java
高亮查询结果[李<font color='red'>四</font>]