概率论与数理统计常用公式大全

文章目录

  • 事件的关系与运算
  • 概率的基本性质
  • 条件概率相关公式
  • 常用分布
    • 离散型分布
      • 0-1分布 B ( 1 , p ) B(1, p) B(1,p)
      • 二项分布 B ( n , p ) B(n,p) B(n,p)
      • 泊松分布 P ( λ ) P(\lambda) P(λ)
      • 几何分布 G ( p ) G(p) G(p)
      • 超几何分布 H ( N , M , n ) H(N,M,n) H(N,M,n)
    • 连续型分布
      • 均匀分布 U ( a , b ) U(a,b) U(a,b)
      • 指数分布 E ( λ ) E(\lambda) E(λ)
      • 正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
  • 一维随机变量函数的分布
  • 多为随机变量及其分布
    • 常见的微微离散型、连续型分布
      • 二维均匀分布
    • 二维正态分布
    • 随机变量的相互独立性
  • 多维随机变量函数的分布

事件的关系与运算

A − B = A − A B = A B ‾ B = A ‾    ⟺    A B = ∅    且 A ∪ B = Ω ( 1 ) 吸 收 律    若 A ⊂ B , 则 A ∪ B = B , A B = A ( 2 ) 交 换 律    A ∪ B = B ∪ A , A B = B A ( 3 ) 结 合 律    ( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) , ( A B ) C = A ( B C ) ( 4 ) 分 配 律    A ( B ∪ C ) = A B ∪ A C , A ∪ B C = ( A ∪ B ) ( A ∪ C ) , A ( B − C ) = A B − A C ( 5 ) 对 偶 律    A ∪ B ‾ = A ˉ ∩ B ˉ , A ∩ B ‾ = A ˉ ∪ B ˉ \begin{aligned} & A -B=A-AB=A\overline{B}\\ &B=\overline{A} \iff AB=\varnothing ~~且 A \cup B=\Omega \\ (1) 吸收律~~ & 若 A \subset B, 则 A \cup B=B, A B=A \\ (2) 交换律~~ &A \cup B=B \cup A, A B=B A \\ (3) 结合律~~ & (A \cup B) \cup C=A \cup(B \cup C),(A B) C=A(B C) \\ (4) 分配律~~ & A(B \cup C)=A B \cup A C, A \cup B C=(A \cup B)(A \cup C), A(B-C)=A B-A C \\ (5) 对偶律~~ & \overline{A \cup B}=\bar{A} \cap \bar{B}, \overline{A \cap B}=\bar{A} \cup \bar{B} \\ \end{aligned} (1)  (2)  (3)  (4)  (5)  AB=AAB=ABB=AAB=  AB=ΩAB,AB=B,AB=AAB=BA,AB=BA(AB)C=A(BC),(AB)C=A(BC)A(BC)=ABAC,ABC=(AB)(AC),A(BC)=ABACAB=AˉBˉ,AB=AˉBˉ

概率的基本性质

P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ) = P ( A 1 ) + P ( A 2 ) + ⋯ + P ( A n )       ( A 1 , A 2 , ⋯   , A n 两 两 互 不 相 容 ) P ( B − A ) = P ( B ) − P ( A )        ( A ⊂ B ) P ( A ‾ ) = 1 − P ( A ) P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P ( A 1 ∪ A 2 ∪ A 3 ) = P ( A 1 ) + P ( A 2 ) + P ( A 3 ) − P ( A 1 A 2 ) − P ( A 1 A 3 ) − P ( A 2 A 3 ) + P ( A 1 A 2 A 3 ) P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ) = ∑ i = 1 n P ( A i ) − ∑ 1 ⩽ i < j ⩽ n P ( A , A j ) + ∑ 1 ⩽ i < j < k n P ( A i A j A k ) − ⋯ + ( − 1 ) n − 1 P ( A 1 A 2 ⋯ A n ) P ( A − B ) = P ( A ) − P ( A B ) \begin{aligned} & P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right) ~~~~~(A_{1}, A_{2}, \cdots, A_{n}两两互不相容)\\\\ & P(B-A)=P(B)-P(A) ~~~~~~(A\subset B) \\\\ & P(\overline A)=1-P(A) \\\\ & P(A\cup B) =P(A) +P(B) -P(AB) \\\\ & P\left(A_{1} \cup A_{2} \cup A_{3}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)-P\left(A_{1} A_{2}\right)-P\left(A_{1} A_{3}\right)-P\left(A_{2} A_{3}\right)+P\left(A_{1} A_{2} A_{3}\right) \\\\ & P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{1 \leqslant i P(A1A2An)=P(A1)+P(A2)++P(An)     A1,A2,,AnP(BA)=P(B)P(A)      (AB)P(A)=1P(A)P(AB)=P(A)+P(B)P(AB)P(A1A2A3)=P(A1)+P(A2)+P(A3)P(A1A2)P(A1A3)P(A2A3)+P(A1A2A3)P(A1A2An)=i=1nP(Ai)1i<jnP(A,Aj)+n1i<j<kP(AiAjAk)+(1)n1P(A1A2An)P(AB)=P(A)P(AB)

条件概率相关公式

P ( B ∣ A ) = P ( A B ) P ( A )        ( 条 件 概 率 ) P ( A B ) = P ( A ) P ( B ∣ A )         ( 乘 法 公 式 ) P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋯ P ( A n ∣ A 1 ⋯ A n − 1 ) \begin{aligned} & P(B \mid A)=\frac{P(A B)}{P(A)} ~~~~~~(条件概率) \\\\ & P(AB) =P(A)P(B\mid A) ~~~~~~~(乘法公式) \\\\ & P\left(A_{1} A_{2} \cdots A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} A_{2}\right) \cdots P\left(A_{n} \mid A_{1} \cdots A_{n-1}\right) \end{aligned} P(BA)=P(A)P(AB)      P(AB)=P(A)P(BA)       P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1An1)

全概率公式

如果 ⋃ i = 1 n A i = Ω , A i A j = ∅ ( i ≠ j ) , P ( A i ) > 0 \bigcup_{i=1}^{n} A_{i}=\Omega, A_{i} A_{j}=\varnothing(i \neq j), P\left(A_{i}\right)>0 i=1nAi=Ω,AiAj=(i=j),P(Ai)>0, 则对任一事件 B B B, 有
B = ⋃ i = 1 n A i B P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) \begin{gathered} B=\bigcup_{i=1}^{n} A_{i} B \\ P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right) \end{gathered} B=i=1nAiBP(B)=i=1nP(Ai)P(BAi)

贝叶斯公式(逆概公式)

如果 ⋃ i = 1 n A i = Ω , A i A j = ∅ ( i ≠ j ) , P ( A i ) > 0 \bigcup_{i=1}^{n} A_{i}=\Omega, A_{i} A_{j}=\varnothing(i \neq j), P\left(A_{i}\right)>0 i=1nAi=Ω,AiAj=(i=j),P(Ai)>0, 则对任一事件 B B B, 只要 P ( B ) > 0 P(B)>0 P(B)>0, 就有
P ( A j ∣ B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) ( j = 1 , 2 , ⋯   , n ) P\left(A_{j} \mid B\right)=\frac{P\left(A_{j}\right) P\left(B \mid A_{j}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)} \quad(j=1,2, \cdots, n) P(AjB)=i=1nP(Ai)P(BAi)P(Aj)P(BAj)(j=1,2,,n)

常用分布

离散型分布

0-1分布 B ( 1 , p ) B(1, p) B(1,p)

  • 符号表示 X ∼ B ( 1 , p ) X \sim B(1, p) XB(1,p)
  • 概率分布 X ∼ ( 1 0 p 1 − p ) X \sim\left(\begin{array}{cc} 1 & 0 \\ p & 1-p \end{array}\right) X(1p01p)
  • 分布解释:结果只要 0 , 1 0,1 0,1 两种,为 1 1 1 的概率为 p p p,为 0 0 0 的概率为 1 − p 1-p 1p
  • 参数解释 1 1 1 为固定常量,即一次伯努利试验; p p p 为伯努利试验结果为 1 1 1 的概率
  • 期望 p p p
  • 方差 p ( 1 − p ) p(1-p) p(1p)

二项分布 B ( n , p ) B(n,p) B(n,p)

  • 符号表示 X ∼ B ( n , p ) X \sim B(n,p) XB(n,p)
  • 概率分布 p k = P { X = k } = C n k p k ( 1 − p ) n − k    ,      k = 0 , 1 , ⋯   , n , 0 < p < 1 p_{k}=P\{X=k\}=\mathrm{C}_{n}^{k} p^{k}(1-p)^{n-k}~~,~~~~ k=0,1, \cdots, n, 0pk=P{X=k}=Cnkpk(1p)nk  ,    k=0,1,,n,0<p<1
  • 分布解释 X X X n n n重伯努利试验中事件 A A A发生的次数。
  • 参数解释 n n n 为进行 n n n 次伯努利试验; p p p 为一次伯努利试验结果为 1 1 1 的概率
  • 期望 n p np np
  • 方差 n p ( 1 − p ) np(1-p) np(1p)

泊松分布 P ( λ ) P(\lambda) P(λ)

  • 符号表示 X ∼ P ( λ ) X \sim P(\lambda) XP(λ)
  • 概率分布 p k = P { X = k } = λ k k ! e − λ      ( k = 0 , 1 , ⋯   ; λ > 0 ) p_{k}=P\{X=k\}=\frac{\lambda^{k}}{k !} \mathrm{e}^{-\lambda}~~~~(k=0,1, \cdots ; \lambda>0) pk=P{X=k}=k!λkeλ    (k=0,1,;λ>0)
  • 分布解释:在某个时间段内,某事件发生 k k k 次的概率。例如:在某个时间段内,卖出 k k k 个包子的概率;知乎大佬形象解释
  • 参数解释 λ \lambda λ均值(也叫强度),即在某时间段内,某时间发生的平均次数
  • 期望 λ \lambda λ
  • 方差 λ \lambda λ
  • 函数图像:https://www.geogebra.org/m/s3xuVuZN
    概率论与数理统计常用公式大全_第1张图片

几何分布 G ( p ) G(p) G(p)

  • 符号表示 X ∼ G ( p ) X\sim G(p) XG(p) X ∼ Ge ( p ) X\sim \text{Ge}(p) XGe(p)
  • 概率分布 p k = P { X = k } = q k − 1 p = ( 1 − p ) k − 1 ⋅ p         ( k = 1 , 2 , ⋯   ; 0 < p < 1 , q = 1 − p ) p_{k}=P\{X=k\}=q^{k-1} p = (1-p)^{k-1}\cdot p~~~~~~~ (k=1,2, \cdots ; 0pk=P{X=k}=qk1p=(1p)k1p       (k=1,2,;0<p<1,q=1p)
  • 分布解释:第 k k k 次做某事才成功的概率。如第5次抛硬币,才抛出正面的概率,即前4次都是反面,第5次是正面
  • 参数解释 p p p 表示成功的概率
  • 期望 1 p \frac{1}{p} p1
  • 方差 1 − p p 2 \frac{1-p}{p^2} p21p

超几何分布 H ( N , M , n ) H(N,M,n) H(N,M,n)

  • 符号表示 X ∼ H ( N , M , n ) X \sim H(N,M,n) XH(N,M,n)
  • 概率分布 p k = P { X = k } = C M k C N − M n − k C N n          ( k = 0 , 1 , ⋯   , min ⁡ { M , n } , M , N , n  为正整数  ) p_{k}=P\{X=k\}=\frac{\mathrm{C}_{\mathrm{M}}^{k} \mathrm{C}_{\mathrm{N}-\mathrm{M}}^{n-k}}{\mathrm{C}_{\mathrm{N}}^{n}}~~~~~~~~(k=0,1, \cdots, \min \{M, n\}, M, N, n \text { 为正整数 }) pk=P{X=k}=CNnCMkCNMnk        (k=0,1,,min{M,n},M,N,n 为正整数 )
  • 分布解释:从有限 N N N个物件(其中包含 M M M个指定种类的物件)中抽出 n n n个物件,成功抽出该指定种类的物件的次数(不放回)。例如:在产品中随机抽 n n n件做检查,发现 k k k件不合格品的概率
  • 参数解释 N N N 为样本总数, M M M为指定样本总数, n n n 为抽样的个数
  • 期望 n M N n \frac{M}{N} nNM
  • 方差 n M ( N − M ) ( N − n ) N 2 ( N − 1 ) \frac{n M(N-M)(N-n)}{N^{2}(N-1)} N2(N1)nM(NM)(Nn)

连续型分布

均匀分布 U ( a , b ) U(a,b) U(a,b)

指数分布 E ( λ ) E(\lambda) E(λ)

正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)

  • 符号表示 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)
  • 概率密度 f ( x ) = 1 2 π σ e − 1 2 ( x − u σ ) 2     ( − ∞ < x < ∞ ) f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-\frac{1}{2}\left(\frac{x-u}{\sigma}\right)^{2}} ~~~\quad(-\inftyf(x)=2π σ1e21(σxu)2   (<x<)
  • 分布函数 F ( x ) = 1 2 π σ ∫ − ∞ x e − ( x − μ ) 2 2 σ 2 d x , − ∞ < x < + ∞ F(x)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} \mathrm{e}^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x, \quad-\inftyF(x)=2π σ1xe2σ2(xμ)2dx,<x<+
  • 分布解释
  • 参数解释 μ \mu μ 为样本均值, σ 2 \sigma^2 σ2 为样本方差
  • 期望 μ \mu μ
  • 方差 σ 2 \sigma^2 σ2

正态分布性质

  • f ( x ) f(x) f(x) 的图像关于直线 x = μ x=\mu x=μ 对称,即 f ( μ − x ) = f ( μ + x ) f(\mu-x)=f(\mu+x) f(μx)=f(μ+x)
  • f ( x ) f(x) f(x) x = μ x=\mu x=μ 处有唯一最大值 f ( μ ) = 1 2 π σ f(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} f(μ)=2π σ1
  • μ = 0 ,   σ 2 = 1 \mu =0, ~\sigma^2=1 μ=0, σ2=1 时的正态分布 N ( 0 , 1 ) N(0,1) N(0,1)标准正态分布,概率密度为: f ( x ) = 1 2 π e − 1 2 x 2 f(x)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2} x^{2}} f(x)=2π 1e21x2
  • 标准正态分布的分布函数 Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t Φ(x)=2π 1xe2t2dt
  • Φ ( x ) \Phi (x) Φ(x) 的性质: Φ ( 0 ) = 0.5 \Phi (0) = 0.5 Φ(0)=0.5 Φ ( + ∞ ) = 1 \Phi (+\infty) = 1 Φ(+)=1 Φ ( − x ) = 1 − Φ ( x ) \Phi (-x) = 1-\Phi(x) Φ(x)=1Φ(x)
  • x = μ ± σ x=\mu \pm \sigma x=μ±σ 处有拐点
  • 固定 σ \sigma σ ,改变 μ \mu μ ,则图像沿 x x x 轴平移而不改变其形状
  • 固定 μ \mu μ ,改变 σ \sigma σ ,则当 σ \sigma σ 很小时,曲线的形状与尖塔类似;当 σ \sigma σ 值增大时,曲线将趋于平坦

函数图像:https://www.geogebra.org/m/sPBsZYET

  • 概率密度函数图像:概率论与数理统计常用公式大全_第3张图片
  • 分布函数图像如下:概率论与数理统计常用公式大全_第4张图片

一维随机变量函数的分布

  • 离散型 若 X ∼ ( x 1 x 2 ⋯ p 1 p 2 ⋯ ) ,      Y = g ( X ) ,      则   Y ∼ ( g ( x 1 ) g ( x 2 ) ⋯ p 1 p 2 ⋯ ) 若X \sim\left(\begin{array}{ccc} x_{1} & x_{2} & \cdots \\ p_{1} & p_{2} & \cdots \end{array}\right) ,~~~~Y= g(X) ,~~~~ 则~Y\sim\left(\begin{array}{ccc} g\left(x_{1}\right) & g\left(x_{2}\right) & \cdots \\ p_{1} & p_{2} & \cdots \end{array}\right) X(x1p1x2p2),    Y=g(X),     Y(g(x1)p1g(x2)p2)

  • 连续型 F Y ( y ) = P { Y ⩽ y } = P { g ( X ) ⩽ y } = ∫ g ( x ) ⩽ y f ( x ) d x F_{Y}(y)=P\{Y \leqslant y\}=P\{g(X) \leqslant y\}=\int_{g(x) \leqslant y} f(x) \mathrm{d} x FY(y)=P{Yy}=P{g(X)y}=g(x)yf(x)dx

多为随机变量及其分布

F ( x 1 , x 2 , ⋯   , x n ) = P { X 1 ⩽ x 1 , X 2 ⩽ x 2 , ⋯   , X n ⩽ x n }       ( x 1 , x 2 , ⋯ x n ) ∈ R n 当 x 1 < x 2 ,     F ( x 1 , y ) ⩽ F ( x 2 , y ) 当 y 1 < y 2 ,     F ( x , y 1 ) ⩽ F ( x , y 2 ) F ( x , y ) = P { X ⩽ x , Y ⩽ y } ( x , y ) ∈ R 2 F ( − ∞ , y ) = F ( x , − ∞ ) = F ( − ∞ , − ∞ ) = 0 F ( + ∞ , + ∞ ) = 1 P { x 1 < x ⩽ x 2 , y 1 < y ⩽ y 2 } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) ⩾ 0 F X ( x ) = P { X ⩽ x } = P { X ⩽ x , Y ⩽ + ∞ } = lim ⁡ y → + ∞ P { X ⩽ x , Y ⩽ y } = lim ⁡ y → + ∞ F ( x , y ) = F ( x , + ∞ ) \begin{aligned} & F\left(x_{1}, x_{2}, \cdots, x_{n}\right)=P\left\{X_{1} \leqslant x_{1}, X_{2} \leqslant x_{2}, \cdots, X_{n} \leqslant x_{n}\right\} ~~~~~ \left(x_{1}, x_{2}, \cdots x_{n}\right) \in R^{n} \\\\ & 当 x_{1}F(x1,x2,,xn)=P{X1x1,X2x2,,Xnxn}     (x1,x2,xn)Rnx1<x2,   F(x1,y)F(x2,y)y1<y2,   F(x,y1)F(x,y2)F(,y)=F(x,)=F(,)=0F(+,+)=1P{x1<xx2,y1<yy2}=F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)0FX(x)=P{Xx}=P{Xx,Y+}=y+limP{Xx,Yy}=y+limF(x,y)=F(x,+)F(x,y)=P{Xx,Yy}(x,y)R2

离散型

F ( x , y ) = P { X ⩽ x , Y ⩽ y } = ∑ x i ⩽ x , y j ⩽ y p i j P { ( X , Y ) ∈ G } = ∑ ( x i , y j ) ∈ G p i j p i ⋅ = P { X = x i } = ∑ j P { X = x i , Y = y j } = ∑ j p i j      ( i = 1 , 2 , ⋯   ) p ⋅ j = P { Y = y j } = ∑ i P { X = x i , Y = y j } = ∑ i p i j      ( j = 1 , 2 , ⋯   ) p X ∣ Y ( x i ∣ y j ) = P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p ⋅ j      ( i = 1 , 2 , ⋯   ) \begin{aligned} & F(x, y)=P\{X \leqslant x, Y \leqslant y\}=\sum_{x_{i} \leqslant x, y_{j} \leqslant y} p_{i j} \\\\ & P\{(X, Y) \in G\}=\sum_{\left(x_{i}, y_{j}\right) \in G} p_{i j} \\\\ &p_{i \cdot}=P\left\{X=x_{i}\right\}=\sum_{j} P\left\{X=x_{i}, Y=y_{j}\right\}=\sum_{j} p_{i j}~~~~(i=1,2, \cdots) \\\\ &p_{\cdot j}=P\left\{Y=y_{j}\right\}=\sum_{i} P\left\{X=x_{i}, Y=y_{j}\right\}=\sum_i p_{i j}~~~~(j=1,2, \cdots) \\\\ & \begin{aligned} p_{X \mid Y}\left(x_{i} \mid y_{j}\right) &=P\left\{X=x_{i} \mid Y=y_{j}\right\}=\frac{P\left\{X=x_{i}, Y=y_{j}\right\}}{P\left\{Y=y_{j}\right\}} \\ &=\frac{p_{i j}}{p \cdot j}~~~~(i=1,2, \cdots) \end{aligned} \end{aligned} F(x,y)=P{Xx,Yy}=xix,yjypijP{(X,Y)G}=(xi,yj)Gpijpi=P{X=xi}=jP{X=xi,Y=yj}=jpij    (i=1,2,)pj=P{Y=yj}=iP{X=xi,Y=yj}=ipij    (j=1,2,)pXY(xiyj)=P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj}=pjpij    (i=1,2,)

连续型

F ( x , y ) = P { X ⩽ x , Y ⩽ y } = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u   d v         ( x , y ) ∈ R 2 P { ( X , Y ) ∈ G } = ∬ G f ( x , y ) d x   d y ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x   d y = 1 ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) F X ( x ) = F ( x , + ∞ ) = ∫ − ∞ x [ ∫ − ∞ + ∞ f ( u , v ) d v ] d u f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f ( x , y ) = f X ( x ) f Y ∣ X ( y ∣ x ) = f Y ( y ) f X ∣ Y ( x ∣ y ) F Y ∣ X ( y ∣ x ) = ∫ − ∞ y f Y ∣ X ( v ∣ x ) d v = ∫ − ∞ y f ( x , v ) f X ( x ) d v F X ∣ Y ( x ∣ y ) = ∫ − ∞ x f X ∣ Y ( u ∣ y ) d u = ∫ − ∞ x f ( u , y ) f Y ( y ) d u \begin{aligned} & F(x, y)=P\{X \leqslant x, Y\leqslant y \}=\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) \mathrm{d} u \mathrm{~d} v ~~~~~~~\quad(x, y) \in \mathbf{R}^{2} \\\\ & P\{(X, Y) \in G\}=\iint_{G} f(x, y) \mathrm{d} x \mathrm{~d} y \\\\ & \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} f(x, y) \mathrm{d} x \mathrm{~d} y=1 \\\\ & \frac{\partial^{2} F(x, y)}{\partial x \partial y}=f(x, y) \\\\ & F_{X}(x)=F(x,+\infty)=\int_{-\infty}^{x}\left[\int_{-\infty}^{+\infty} f(u, v) \mathrm{d} v\right] \mathrm{d} u \\\\ & f_{X}(x)=\int_{-\infty}^{+\infty} f(x, y) \mathrm{d} y \\\\ & f_{Y}(y)=\int_{-\infty}^{+\infty} f(x, y) \mathrm{d} x \\\\ & f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)} \\\\ & f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)} \\\\ & f(x, y)=f_{X}(x) f_{Y \mid X}(y \mid x)=f_{Y}(y) f_{X \mid Y}(x \mid y) \\\\ & F_{Y \mid X}(y \mid x)=\int_{-\infty}^{y} f_{Y \mid X}(v \mid x) \mathrm{d} v=\int_{-\infty}^{y} \frac{f(x, v)}{f_{X}(x)} \mathrm{d} v \\\\ & F_{X \mid Y}(x \mid y)=\int_{-\infty}^{x} f_{X \mid Y}(u \mid y) \mathrm{d} u=\int_{-\infty}^{x} \frac{f(u, y)}{f_{Y}(y)} \mathrm{d} u \end{aligned} F(x,y)=P{Xx,Yy}=xyf(u,v)du dv       (x,y)R2P{(X,Y)G}=Gf(x,y)dx dy++f(x,y)dx dy=1xy2F(x,y)=f(x,y)FX(x)=F(x,+)=x[+f(u,v)dv]dufX(x)=+f(x,y)dyfY(y)=+f(x,y)dxfYX(yx)=fX(x)f(x,y)fXY(xy)=fY(y)f(x,y)f(x,y)=fX(x)fYX(yx)=fY(y)fXY(xy)FYX(yx)=yfYX(vx)dv=yfX(x)f(x,v)dvFXY(xy)=xfXY(uy)du=xfY(y)f(u,y)du

常见的微微离散型、连续型分布

二维均匀分布

f ( x , y ) = { 1 S D , ( x , y ) ∈ D , 0 ,  其他  , f(x, y)=\left\{\begin{array}{cc} \frac{1}{S_{D}}, & (x, y) \in D, \\ 0, & \text { 其他 }, \end{array}\right. f(x,y)={SD1,0,(x,y)D, 其他 ,

其中 S D S_D SD 为区域 D D D 的面积

二维正态分布

f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 σ 1 ) 2 − 2 ρ ( x − μ 1 σ 1 ) ( y − μ 2 σ 2 ) + ( y − μ 2 σ 2 ) 2 ] } f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]\right\} f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[(σ1xμ1)22ρ(σ1xμ1)(σ2yμ2)+(σ2yμ2)2]}

其中 μ 1 ∈ R , μ 2 ∈ R , σ 1 > 0 , σ 2 > 0 , − 1 < ρ < 1 \mu_{1} \in \mathbf{R}, \mu_{2} \in \mathbf{R}, \sigma_{1}>0, \sigma_{2}>0,-1<\rho<1 μ1R,μ2R,σ1>0,σ2>0,1<ρ<1, 则称 ( X , Y ) (X, Y) (X,Y) 服从参数为 μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho μ1,μ2,σ12,σ22,ρ 的二维正态分布, 记为 ( X , Y ) ∼ N ( μ 1 , μ 2 ; σ 1 2 , σ 2 2 ; ρ ) . (X, Y) \sim N\left(\mu_{1}, \mu_{2} ; \sigma_{1}^{2}, \sigma_{2}^{2} ; \rho\right) . (X,Y)N(μ1,μ2;σ12,σ22;ρ). 此时有:
(1) X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) , ρ X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \rho XN(μ1,σ12),YN(μ2,σ22),ρ X X X Y Y Y 的相关系数, 即
ρ = Cov ⁡ ( X , Y ) D X D Y = Cov ⁡ ( X , Y ) σ 1 σ 2 \rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{D X} \sqrt{D Y}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{1} \sigma_{2}} ρ=DX DY Cov(X,Y)=σ1σ2Cov(X,Y)
(2) X , Y X, Y X,Y 的条件分布都是正态分布.
(3) a X + b Y ( a ≠ 0 a X+b Y(a \neq 0 aX+bY(a=0 b ≠ 0 b \neq 0 b=0 )服从正态分布.
(4) X X X Y Y Y 相互独立的充要条件是 X X X Y Y Y 不相关, 即 ρ = 0 \rho=0 ρ=0

随机变量的相互独立性

F ( x , y ) = F X ( x ) ⋅ F Y ( y )    ⟺    X 与 Y 相 互 独 立 F ( x 1 , x 2 , ⋯   , x n ) = F 1 ( x 1 ) ⋯ F n ( x n )    ⟺    X 1 , X 2 , ⋯   , X n 相 互 独 立 P { X 1 ⩽ x 1 , ⋯   , X n ⩽ x n ; Y 1 ⩽ y 1 , ⋯   , Y m ⩽ y m } = P { X 1 ⩽ x 1 , ⋯   , X n ⩽ x n } ⋅ P { Y 1 ⩽ y 1 , ⋯   , Y m ⩽ y m } 即   F ( x 1 , ⋯   , x n , y 1 , ⋯   , y m ) = F 1 ( x 1 , ⋯   , x n ) ⋅ F 2 ( y 1 , ⋯   , y m )    ⟺    ( X 1 , X 2 , ⋯   , X n ) 与 ( Y 1 , Y 2 , ⋯   , Y m ) 相 互 独 立 P { X 1 = x 1 , ⋯   , X n = x n } = ∏ n P { X i = x i }       ( 离 散 型 , 且 相 互 独 立 ) f ( x 1 , x 2 , ⋯   , x n ) = f 1 ( x 1 ) ⋅ f 2 ( x 2 ) , ⋯   , f n ( x n )     ( 连 续 型 , 且 相 互 独 立 ) X , Y 独 立    ⟹    P { X = x i ∣ Y = y j } = P { X = x i } ( P { Y = y j } > 0 ) P { Y = y j ∣ X = x i } = P { Y = y j } ( P { X = x i } > 0 )     ( 离 散 型 ) X , Y 独 立    ⟹    f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) = f X ( x ) ( f Y ( y ) > 0 ) f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) = f Y ( y ) ( f X ( x ) > 0 ) X 1 , X 2 , ⋯   , X n 相 互 独 立    ⟹    g 1 ( X 1 ) , g 2 ( X 2 ) , ⋯   , g n ( X n ) 相 互 独 立     ( g ( x ) 为 一 元 连 续 函 数 ) \begin{aligned} & F(x, y)=F_{X}(x) \cdot F_{Y}(y) \iff X与Y相互独立 \\\\ & F\left(x_{1}, x_{2}, \cdots, x_{n}\right)=F_{1}\left(x_{1}\right) \cdots F_{n}\left(x_{n}\right) \iff X_1,X_2,\cdots,X_n 相互独立 \\\\ & P\left\{X_{1} \leqslant x_{1}, \cdots, X_{n} \leqslant x_{n} ; Y_{1} \leqslant y_{1}, \cdots, Y_{m} \leqslant y_{m}\right\}=P\left\{X_{1} \leqslant x_{1}, \cdots, X_{n} \leqslant x_{n}\right\} \cdot P\left\{Y_{1} \leqslant y_{1}, \cdots, Y_{m} \leqslant y_{m}\right\} \\ & 即 ~F\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{m}\right)=F_{1}\left(x_{1}, \cdots, x_{n}\right) \cdot F_{2}\left(y_{1}, \cdots, y_{m}\right) \\ & \iff (X_1,X_2,\cdots, X_n) 与(Y_1,Y_2,\cdots, Y_m) 相互独立 \\\\ & P\left\{X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right\}=\prod^{n} P\left\{X_{i}=x_{i}\right\} ~~~~~(离散型,且相互独立) \\\\ & f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right), \cdots, f_{n}\left(x_{n}\right) ~~~(连续型,且相互独立)\\\\ & X,Y独立 \implies \begin{array}{ll} P\left\{X=x_{i} \mid Y=y_{j}\right\}=P\left\{X=x_{i}\right\} & \left(P\left\{Y=y_{j}\right\}>0\right) \\ P\left\{Y=y_{j} \mid X=x_{i}\right\}=P\left\{Y=y_{j}\right\} & \left(P\left\{X=x_{i}\right\}>0\right) \end{array} ~~~(离散型)\\\\ & X,Y独立 \implies \begin{aligned} &f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=f_{X}(x) \quad\left(f_{Y}(y)>0\right) \\ &f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=f_{Y}(y) \quad\left(f_{X}(x)>0\right) \end{aligned} \\\\ & X_1,X_2,\cdots ,X_n 相互独立 \implies g_1(X_1),g_2(X_2),\cdots,g_n(X_n) 相互独立 ~~~(g(x)为一元连续函数) \end{aligned} F(x,y)=FX(x)FY(y)XYF(x1,x2,,xn)=F1(x1)Fn(xn)X1,X2,,XnP{X1x1,,Xnxn;Y1y1,,Ymym}=P{X1x1,,Xnxn}P{Y1y1,,Ymym} F(x1,,xn,y1,,ym)=F1(x1,,xn)F2(y1,,ym)(X1,X2,,Xn)(Y1,Y2,,Ym)P{X1=x1,,Xn=xn}=nP{Xi=xi}     f(x1,x2,,xn)=f1(x1)f2(x2),,fn(xn)   X,YP{X=xiY=yj}=P{X=xi}P{Y=yjX=xi}=P{Y=yj}(P{Y=yj}>0)(P{X=xi}>0)   X,YfXY(xy)=fY(y)f(x,y)=fX(x)(fY(y)>0)fYX(yx)=fX(x)f(x,y)=fY(y)(fX(x)>0)X1,X2,,Xng1(X1),g2(X2),,gn(Xn)   g(x)

多维随机变量函数的分布

P { U = g ( x i , y i ) } = P { X = x i , Y = y j } = p i j F U ( u ) = P { U ⩽ u } = P { g ( X , Y ) ⩽ u } = ∑ g ( x i , y j ) ⩽ u P { X = x i , Y = y j } \begin{aligned} & P\left\{U=g\left(x_{i}, y_{i}\right)\right\}=P\left\{X=x_{i}, Y=y_{j}\right\}=p_{i j} \\\\ & F_{U}(u)=P\{U \leqslant u\}=P\{g(X, Y) \leqslant u\}=\sum_{g\left(x_{i}, y_{j}\right) \leqslant u} P\left\{X=x_{i}, Y=y_{j}\right\} \end{aligned} P{U=g(xi,yi)}=P{X=xi,Y=yj}=pijFU(u)=P{Uu}=P{g(X,Y)u}=g(xi,yj)uP{X=xi,Y=yj}

概率论与数理统计常用公式大全_第5张图片
概率论与数理统计常用公式大全_第6张图片
概率论与数理统计常用公式大全_第7张图片
概率论与数理统计常用公式大全_第8张图片
概率论与数理统计常用公式大全_第9张图片
概率论与数理统计常用公式大全_第10张图片
概率论与数理统计常用公式大全_第11张图片
概率论与数理统计常用公式大全_第12张图片

你可能感兴趣的:(机器学习,概率论,线性代数)