- 【心灵鸡汤】深度学习技能形成树:从零基础到AI专家的成长路径全解析
智算菩萨
人工智能深度学习
引言:技能树的生长哲学在这个人工智能浪潮汹涌的时代,深度学习犹如一棵参天大树,其根系深深扎入数学与计算科学的沃土,主干挺拔地承载着机器学习的核心理念,而枝叶则繁茂地延伸至计算机视觉、自然语言处理、强化学习等各个应用领域。对于初入此领域的新手而言,理解这棵技能树的生长规律,掌握其形成过程中的关键节点和发展阶段,将直接决定其在人工智能道路上能够走多远、攀多高。技能树的概念源于游戏设计,但在学习深度学习
- linux环境中配置中文输入法
王慧-tyger
linuxlinux中文
rpm方式。在安装盘上已经有各种语言包了,我们只需要找到他们,并安装就可以了。中文的是fonts-chinese-3.02-9.6.el5.noarch.rpmfonts-ISO8859-2-75dpi-1.0-17.1.noarch.rpm进入各文件对应目录,运行下面命令:#rpm-ivhfonts-chinese-3.02-9.6.el5.noarch.rpm#rpm-ivhfonts-ISO
- 【计算机毕业设计】基于Springboot的办公用品管理系统+LW
枫叶学长(专业接毕设)
Java毕业设计实战案例课程设计springboot后端
博主介绍:✌全网粉丝3W+,csdn特邀作者、CSDN新星计划导师、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。主要内容:
- 超轻量级中文OCR项目使用教程
甄墨疆
超轻量级中文OCR项目使用教程chineseocr_lite超轻量级中文ocr,支持竖排文字识别,支持ncnn、mnn、tnn推理(dbnet(1.8M)+crnn(2.5M)+anglenet(378KB))总模型仅4.7M项目地址:https://gitcode.com/gh_mirrors/ch/chineseocr_lite1.项目介绍本项目是一个超轻量级的中文OCR(OpticalCha
- 【TVM 教程】如何处理 TVM 报错
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/运行TVM时,可能会遇到如下报错:---------------------------------------------------------------AnerroroccurredduringtheexecutionofTVM.F
- 【PaddleOCR】OCR文本检测与文本识别数据集整理,持续更新......
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
zhaoyi_he
重构人工智能
一、引言:为什么多模态是AI发展的下一场革命?过去十年,深度学习推动了计算机视觉和自然语言处理的飞跃,但两者的发展路径长期割裂。随着生成式AI和大模型时代的到来,**多模态大模型(MultimodalFoundationModels)**以统一的建模方式处理图像、文本、音频、视频等多源数据,重塑了“感知-认知-决策”链条,为AGI迈出关键一步。OpenAI的GPT-4o、Google的Gemini
- STM32通用定时器PWM波输出1
zp7541
stm32基本知识stm32电子
STM32通用定时器PWM波输出1一、简介根据STM32中文参考手册,完成STM32通用定时器的PWM输出代码。二、1.STM32中文参考手册的PWM部分三、代码的编写1.先使能TIM3定时器voidPWM1_init(u16arr,u16psc){RCC->APB1ENR|=1APB2ENR|=1CRL&=0xffffff00;//PB0PB1GPIOB->CRL|=0x000000bb;3.脉
- .eslintrc.js文件内容/配置eslint/eslint参数
是泡沫呀
前端工程化javascript前端vue.jswebpacknpm
首先放一个官网的链接Listofavailablerules-ESLint中文文档然后直接上代码这里以vue项目为例,主要两个文件,1是.eslintrc.js文件(配置),2是.eslintignore(忽略不需要匹配的文件)重点:修改配置文件后,要重启项目才能生效一、这个是.eslintrc.js//ESlint检查配置module.exports={root:true,parserOptio
- sentinel 微服务流量治理工具,使用初步
RR1335
微服务Gateway#Springsentinel微服务架构
官网入口introduction|Sentinel这是阿里巴巴的服务,中文支持很好maven配置入口https://mvnrepository.com/artifact/com.alibaba.csp/sentinel-corecom.alibaba.cspsentinel-core1.8.6sentinel控制台需要引入的依赖com.alibaba.cspsentinel-transport-s
- ImportError: /nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkComplete_12_4
爱编程的喵喵
Python基础课程pythonImportErrortorchnvJitLink解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:/home/
- SVN 安装使用教程
小奇JAVA面试
安装使用教程svn
一、SVN简介SVN(Subversion)是一个流行的集中式版本控制系统,用于跟踪文件的更改历史,常用于软件开发项目的代码管理。虽然Git更加流行,但SVN仍在很多传统企业和大型项目中被广泛使用。二、SVN安装2.1Windows安装(使用TortoiseSVN)下载地址:https://tortoisesvn.net/downloads.html安装后系统右键菜单会添加SVN功能;推荐安装中文
- 【机器学习笔记 Ⅱ】11 决策树模型
巴伦是只猫
机器学习机器学习笔记决策树
决策树模型(DecisionTree)详解决策树是一种树形结构的监督学习模型,通过一系列规则对数据进行分类或回归。其核心思想是模仿人类决策过程,通过不断提问(基于特征划分)逐步逼近答案。1.核心概念节点类型:根节点:起始问题(最佳特征划分点)。内部节点:中间决策步骤(特征判断)。叶节点:最终预测结果(类别或数值)。分支:对应特征的取值或条件判断(如“年龄≥30?”)。2.构建决策树的关键步骤(1)
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- 【机器学习笔记Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
- 【机器学习笔记Ⅰ】6 多类特征
巴伦是只猫
机器学习机器学习笔记人工智能
多类特征(Multi-classFeatures)详解多类特征是指一个特征(变量)可以取多个离散的类别值,且这些类别之间没有内在的顺序关系。这类特征是机器学习中常见的数据类型,尤其在分类和回归问题中需要特殊处理。1.核心概念(1)什么是多类特征?定义:特征是离散的、有限的类别,且类别之间无大小或顺序关系。示例:颜色:红、绿、蓝(无顺序)。城市:北京、上海、广州(无数学意义的大小关系)。动物类别:猫
- 图像分割技术详解:从原理到实践
lanjieying
本文还有配套的精品资源,点击获取简介:图像分割是图像处理领域将图像分解为多个区域的过程,用于图像分析、特征提取等。文章介绍了图像分割的原理,并通过一个将图像划分为2*4子块的示例,展示了如何使用Python和matplotlib库中的tight_subplot函数进行图像分割和展示。文章还探讨了图像分割在不同领域的应用,以及如何在机器学习项目中作为数据预处理步骤。1.图像分割基本概念在图像处理领域
- 机器学习笔记——支持向量机
star_and_sun
机器学习笔记支持向量机
支持向量机参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题最大化间隔间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开间隔最大化的分离超平面的的求解怎么求呢?最终的方法如下1.线性可分的支持向量机的优化目标其实就是找得到分离的的超平面求得参数w和b的值就可以了注意,最大间隔分离超平面是唯一的,间隔叫硬间隔1.1
- 【机器学习&深度学习】多分类评估策略
一叶千舟
深度学习【理论】深度学习【应用必备常识】大数据人工智能
目录前言一、多分类3大策略✅宏平均(MacroAverage)✅加权平均(WeightedAverage)✅微平均(MicroAverage)二、类比理解2.1宏平均(MacroAverage)2.1.1计算方式2.1.2适合场景2.1.3宏平均不适用的场景2.1.4宏平均一般用在哪些指标上?2.1.5怎么看macroavg指标?2.1.6宏平均值低说明了什么?2.1.7从宏平均指标中定位模型短板
- 【机器学习笔记Ⅰ】7 向量化
巴伦是只猫
机器学习机器学习笔记人工智能
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
- 大语言模型应用指南:ReAct 框架
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
大语言模型应用指南:ReAct框架关键词:大语言模型,ReAct框架,自然语言处理(NLP),模型融合,多模态学习,深度学习,深度学习框架1.背景介绍1.1问题由来近年来,深度学习技术在自然语言处理(NLP)领域取得了显著进展。尤其是大语言模型(LargeLanguageModels,LLMs),如BERT、GPT系列等,通过在大规模无标签数据上进行预训练,获得了强大的语言理解和生成能力。然而,预
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- 李宏毅2025《机器学习》第四讲-Transformer架构的演进
Transformer架构的演进与替代方案:从RNN到Mamba的技术思辨Transformer作为当前AI领域的标准架构,其设计并非凭空而来,也并非没有缺点。本次讨论的核心便是:新兴的架构,如MAMA,是如何针对Transformer的弱点进行改进,并试图提供一个更优的解决方案的。要理解架构的演进,我们必须首先明确一个核心原则:每一种神经网络架构,都有其存在的技术理由。CNN(卷积神经网络):为
- 条件概率:不确定性决策的基石
大千AI助手
人工智能Python#OTHER决策树算法机器学习人工智能条件概率概率论
条件概率是概率论中的核心概念,用于描述在已知某一事件发生的条件下,另一事件发生的概率。它量化了事件之间的关联性,是贝叶斯推理、统计建模和机器学习的基础。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、定义与公式设(A)和(B)是两个随机事件,且(P(B)>0):条件概率(P(A\midB))表示
- 探索AI人工智能医疗NLP实体识别系统的架构设计
AI学长带你学AI
人工智能自然语言处理easyuiai
探索AI人工智能医疗NLP实体识别系统的架构设计关键词:人工智能、医疗NLP、实体识别、系统架构、深度学习、自然语言处理、医疗信息化摘要:本文将深入探讨医疗领域NLP实体识别系统的架构设计。我们将从基础概念出发,逐步解析医疗文本处理的特殊性,详细介绍实体识别技术的核心原理,并通过实际案例展示如何构建一个高效可靠的医疗实体识别系统。文章还将探讨当前技术面临的挑战和未来发展方向,为医疗AI领域的从业者
- 人工智能动画展示人类的特征
AGI大模型与大数据研究院
AI大模型应用开发实战javapythonjavascriptkotlingolang架构人工智能
人工智能,动画,人类特征,情感识别,行为模拟,机器学习,深度学习,自然语言处理1.背景介绍人工智能(AI)技术近年来发展迅速,已渗透到生活的方方面面。从智能语音助手到自动驾驶汽车,AI正在改变着我们的世界。然而,尽管AI技术取得了令人瞩目的成就,但它仍然难以完全模拟人类的复杂行为和特征。人类的特征是多方面的,包括情感、认知、社交和创造力等。这些特征是人类区别于其他生物的重要标志,也是人类社会文明发
- 《支持向量机(SVM)在医疗领域的变革性应用》
CodeJourney.
支持向量机算法机器学习
在医疗科技日新月异的今天,先进的数据分析与机器学习技术正逐渐成为提升诊疗水平、助力医学研究的关键力量。支持向量机(SVM),凭借其独特的优势,在医疗这片复杂且对精准度要求极高的领域崭露头角,带来诸多令人瞩目的应用成果。一、疾病诊断:癌症早期筛查的“火眼金睛”癌症,作为全球健康的“头号杀手”,早期诊断对提升患者生存率意义非凡。在乳腺癌筛查领域,SVM发挥着重要作用。医疗科研人员收集大量乳腺组织的影像
- 机器学习20-线性网络思考
坐吃山猪
机器学习机器学习人工智能线性网络
机器学习20-线性网络思考针对线性网络的基础问题,使用基础示例进行解释1-核心知识点1-线性模型家族的线性回归和逻辑回归分别是什么,线性模型家族还有没有其他的模型线性模型家族是一系列基于线性假设的统计模型,它们假设因变量和自变量之间存在线性关系。线性模型家族中的两个最常见模型是线性回归和逻辑回归。线性回归(LinearRegression):线性回归是一种用于预测连续因变量的模型。它假设因变量yy
- 机器学习18-强化学习RLHF
坐吃山猪
机器学习机器学习人工智能
机器学习18-强化学习RLHF1-什么是RLHFRLHF(ReinforcementLearningfromHumanFeedback)即基于人类反馈的强化学习算法,以下是详细介绍:基本原理RLHF是一种结合了强化学习和人类反馈的机器学习方法。传统的强化学习通常依赖于预定义的奖励函数来指导智能体的学习,而RLHF则通过引入人类的反馈来替代或补充传统的奖励函数。在训练过程中,人类会对智能体的行为或输
- 机器学习19-Transformer和AlexNet思考
坐吃山猪
机器学习机器学习transformer人工智能
Transformer和AlexNet思考关于Transformer和AlexNet发展的一些思考1-核心知识点Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?AlexNet的主要核心思路是什么,为什么表现那么好?现在有什么比AlexNet更优秀的算法2-思路整理1-Word2Vec的作用是什么,和Transformer的诞生有什么关系吗?Word2Vec的作用Word2
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_