[最优化理论] 梯度下降法 + 精确线搜索(单峰区间搜索 + 黄金分割)C++ 代码

这是我的课程作业,用了 Eigen 库,最后的输出是 latex 的表格的一部分

具体内容就是 梯度下降法 + 精确线搜索(单峰区间搜索 + 黄金分割)

从书本的 Matlab 代码转译过来的其实,所以应该是一看就懂了

这里定义了两个测试函数 fun 和 fun2

整个最优化方法包装在 SteepestDescent 类里面

用了模板封装类,这样应该是 double 和 Eigne 的 Vector 都可以支持的

用了 tuple 返回值,用了 functional 接受函数形参,所以应该要 C++11 以上进行编译

#include "3rdparty/Eigen/Eigen/Dense"

#include 
#include 
#include 
#include 
#include 
#include 

#ifndef DEBUG
#    define DEBUG 0
#endif

using namespace Eigen;

template<class YClass, class XClass>
class SteepestDescent
{
public:
    SteepestDescent(std::function<YClass(XClass)> const& fun,
                    std::function<XClass(XClass)> const& gfun,
                    double                               delta,
                    double                               epsilon)
        : m_fun(fun)
        , m_gfun(gfun)
        , m_delta(delta)
        , m_epsilon(epsilon) {};

    /**
     * @brief Find single peak interval.
     *
     * It will stop if the number of iterations exceeds the given upper limit.
     *
     * @param fun Target function.
     * @param alpha0 Start point.
     * @param h Search direction.
     *
     * @return XClass Left end of single peak interval.
     * @return XClass Right end of single peak interval.
     * @return XClass Inner point of single peak interval.
     * 1 represents same direction w.r.t. h, -1 represents reversed direction w.r.t. h.
     */
    std::tuple<XClass, XClass, XClass> ForwardBackward(XClass alpha0, XClass h);

    /**
     * @brief Find a minimum of a function inside a specified interval.
     *
     * @param fun Target function.
     * @param a Left end of interval.
     * @param b Right end of interval.
     * @param delta Tolerable error of input variable.
     * @param epsilon Tolerable error of target function value.
     *
     * @return bool Is early stop. Let interpolation points to be p, q, if fun(a) < fun(p) and fun(q) > fun(b)
     * @return XClass Minimum point.
     * @return YClass Function value of minimum point.
     */
    std::tuple<bool, XClass, YClass> GoldenSectionSearch(XClass a, XClass b);

    /**
     * @brief Run Forward Backward and Golden Section Search
     *
     * @param fun Target function.
     * @param gfun Gredient of target function.
     * @param x0 Start point.
     * @param h Search direction.
     * @param delta Tolerable error of input variable.
     * @param epsilon Tolerable error of target function value.
     * @return std::tuple
     */
    std::tuple<XClass, YClass, uint32_t> ForwardBackwardAndGoldenSectionSearch(XClass x0);

    /**
     * @brief Run Armijo Search
     *
     * @param fun Target function.
     * @param gfun Gredient of target function.
     * @param x0 Start point.
     * @param h Search direction.
     * @param delta Tolerable error of input variable.
     * @param epsilon Tolerable error of target function value.
     * @return std::tuple
     */
    std::tuple<XClass, YClass, uint32_t> ArmijoSearch(XClass x0);

private:
    std::function<YClass(XClass)> m_fun;
    std::function<XClass(XClass)> m_gfun;
    double                        m_delta;
    double                        m_epsilon;
};

template<class YClass, class XClass>
std::tuple<XClass, XClass, XClass> SteepestDescent<YClass, XClass>::ForwardBackward(XClass alpha0, XClass h)
{
    uint32_t k = 0, max_k = 500;
    bool     reversed = false;

    XClass alpha1 = alpha0, alpha = alpha0;
    YClass phi0 = m_fun(alpha0), phi1 = m_fun(alpha0);

    double t = 1e-2;
    while (k < max_k)
    {
        alpha1 = alpha0 + t * h;
        phi1   = m_fun(alpha1);
        // forward search
        if (phi1 < phi0)
        {
            t      = 2.0 * t;
            alpha  = alpha0;
            alpha0 = alpha1;
            phi0   = phi1;
        }
        else
        {
            // backward search
            if (k == 0)
            {
                t     = -t;
                alpha = alpha1;
            }
            // find another end
            else
            {
                break;
            }
        }
        ++k;
    }

#if DEBUG
    std::cout << "ForwardBackward total iteration = " << std::endl;
    std::cout << k << std::endl;
#endif

    XClass left  = t > 0.0 ? alpha : alpha1;
    XClass right = t < 0.0 ? alpha : alpha1;
    return {left, right, alpha0};
}

template<class YClass, class XClass>
std::tuple<bool, XClass, YClass> SteepestDescent<YClass, XClass>::GoldenSectionSearch(XClass a, XClass b)
{
    uint32_t k = 0, max_k = 500;

    double t = (sqrt(5) - 1.0) / 2.0;
    XClass h = b - a;
    XClass p = a + (1 - t) * h, q = a + t * h;

    YClass phia = m_fun(a), phib = m_fun(b);
    YClass phip = m_fun(p), phiq = m_fun(q);

    bool is_early_stop = false;

    if (phia < phip && phiq > phib)
    {
        is_early_stop = true;

#if DEBUG
        std::cout << "GoldenSectionSearch total it eration = " << std::endl;
        std::cout << k << std::endl;
#endif

        return {is_early_stop, a, phia};
    }

    while (((abs(phip - phia) > m_epsilon) || (h.norm() > m_delta)) && k < max_k)
    {
        if (phip < phiq)
        {
            b = q;
            q = p;

            phib = phiq;
            phiq = phip;

            h = b - a;
            p = a + (1 - t) * h;

            phip = m_fun(p);
        }
        else
        {
            a = p;
            p = q;

            phia = phip;
            phip = phiq;

            h = b - a;
            q = a + t * h;

            phiq = m_fun(q);
        }

        ++k;
    }

#if DEBUG
    std::cout << "GoldenSectionSearch total iteration = " << std::endl;
    std::cout << k << std::endl;
#endif

    if (phip <= phiq)
    {
        return {is_early_stop, p, phip};
    }
    else
    {
        return {is_early_stop, q, phiq};
    }
}

template<class YClass, class XClass>
std::tuple<XClass, YClass, uint32_t> SteepestDescent<YClass, XClass>::ForwardBackwardAndGoldenSectionSearch(XClass x0)
{
    uint32_t k = 0, max_k = 5000;

    YClass phi_min = m_fun(x0);

#if DEBUG
    // file pointer
    std::fstream fout;

    // opens an existing csv file or creates a new file.
    fout.open("SteepestDescent.csv", std::ios::out | std::ios::trunc);

    // Insert the data to file
    fout << x0[0] << ", " << x0[1] << ", " << phi_min << "\n";
#endif

    while (k < max_k)
    {
        Vector2d h = -m_gfun(x0);

        if (h.norm() < m_epsilon)
        {
            return {x0, phi_min, k};
        }

        auto [left, right, inner] = ForwardBackward(x0, h);

        auto [is_early_stop, x1, phix1] = GoldenSectionSearch(left, right);

        if (is_early_stop)
        {
            x1    = inner;
            phix1 = m_fun(x1);
        }

        x0      = x1;
        phi_min = phix1;

        ++k;

#if DEBUG
        std::cout << "iteration " << k << ":" << std::endl;

        std::cout << "h = " << std::endl;
        std::cout << h << std::endl;

        std::cout << "left pointer = " << std::endl;
        std::cout << left << std::endl;

        std::cout << "right pointer = " << std::endl;
        std::cout << right << std::endl;

        std::cout << "inner pointer = " << std::endl;
        std::cout << inner << std::endl;

        std::cout << "current point = " << std::endl;
        std::cout << x1 << std::endl;

        std::cout << "current evaluation = " << std::endl;
        std::cout << phix1 << std::endl;

        // Insert the data to file
        fout << x0[0] << ", " << x0[1] << ", " << phi_min << "\n";
#endif
    }

    return {x0, phi_min, k};
}

template<class YClass, class XClass>
std::tuple<XClass, YClass, uint32_t> SteepestDescent<YClass, XClass>::ArmijoSearch(XClass x0)
{
    uint32_t k = 0, max_k = 5000;

    YClass phi_min = m_fun(x0);

    double rho   = 0.5;
    double sigma = 0.4;

    while (k < max_k)
    {
        Vector2d h = -m_gfun(x0);

        if (h.norm() < m_epsilon)
        {
            return {x0, phi_min, k};
        }

        uint32_t m  = 0;
        uint32_t mk = 0;
        while (m < 20) // Armijo Search
        {
            phi_min = m_fun(x0 + pow(rho, m) * h);
            if (phi_min < m_fun(x0) + sigma * pow(rho, m) * (-pow(h.norm(), 2.0)))
            {
                mk = m;
                break;
            }

            m = m + 1;
        }
        x0 = x0 + pow(rho, mk) * h;

        ++k;
    }

    return {x0, phi_min, k};
}

double fun(Vector2d x) { return 100.0 * pow(pow(x[0], 2.0) - x[1], 2.0) + pow(x[0] - 1, 2.0); }

Vector2d gfun(Vector2d x)
{
    return Vector2d(400.0 * x[0] * (pow(x[0], 2.0) - x[1]) + 2.0 * (x[0] - 1.0), -200.0 * (pow(x[0], 2.0) - x[1]));
}

double fun2(Vector2d x) { return 3.0 * pow(x[0], 2.0) + 2.0 * pow(x[1], 2.0) - 4.0 * x[0] - 6.0 * x[1]; }

Vector2d gfun2(Vector2d x) { return Vector2d(6.0 * x[0] - 4.0, 4.0 * x[1] - 6.0); }

int main()
{
    std::vector<Vector2d> points {Vector2d(0.0, 0.0),
                                  Vector2d(2.0, 1.0),
                                  Vector2d(1.0, -1.0),
                                  Vector2d(-1.0, -1.0),
                                  Vector2d(-1.2, 1.0),
                                  Vector2d(10.0, 10.0)};

    SteepestDescent<double, Vector2d> sd(fun, gfun, 1e-4, 1e-5);

    std::fstream fout_result_1, fout_result_2;

    fout_result_1.open("ForwardBackwardAndGoldenSectionSearch_Result.csv", std::ios::out | std::ios::trunc);
    fout_result_2.open("ArmijoSearch_Result.csv", std::ios::out | std::ios::trunc);

    fout_result_1 << "初始点 ($x_0$) & 目标函数值 ($f(x_k)$) & 迭代次数 ($k$) \\\\"
                  << "\n";
    fout_result_1 << "\\midrule"
                  << "\n";
    fout_result_2 << "初始点 ($x_0$) & 目标函数值 ($f(x_k)$) & 迭代次数 ($k$) \\\\"
                  << "\n";
    fout_result_2 << "\\midrule"
                  << "\n";

    for (size_t i = 0; i < points.size(); ++i)
    {
        auto [x, val, k] = sd.ForwardBackwardAndGoldenSectionSearch(points[i]);
        fout_result_1 << "$(" << points[i][0] << ", " << points[i][1] << ")^T$ & " << val << " & " << k << " \\\\"
                      << "\n";

        auto [x2, val2, k2] = sd.ArmijoSearch(points[i]);
        fout_result_2 << "$(" << points[i][0] << ", " << points[i][1] << ")^T$ & " << val2 << " & " << k2 << " \\\\"
                      << "\n";
    }

    fout_result_1.close();
    fout_result_2.close();
}

你可能感兴趣的:(c++,最优化理论)