单片机第三季-第五课:GPIO控制LED

目录

1,GPIO数据手册

1.1,端口配置寄存器

​1.2,端口输入数据寄存器和端口输出数据寄存器 

​1.3,端口位设置/清除寄存器 

1.4,端口位清除寄存器 

2,原理图分析和MDK工程

3,写代码通过GPIO点亮LED 

4,STM32时钟设置函数移植 

5,STM32外设编程经验总结 


1,GPIO数据手册

每个GPI/O端口有两个32位配置寄存器(GPIOx_CRL,GPIOx_CRH),两个32位数据寄存器(GPIOx_IDR和GPIOx_ODR),一个32位置位/复位寄存器(GPIOx_BSRR),一个16位复位寄存器(GPIOx_BRR)和一个32位锁定寄存器(GPIOx_LCKR)。

GPIOx_CRL,GPIOx_CRH中的x代表端口编号,CR代表control register,L代表Low,H代表High;

GPIOx_IDR和GPIOx_ODR中的IDR代表input data register,ODR代表output data register;

GPIOx_LCKR是锁定寄存器,可以将输出锁定,提升安全性,也是STM32与51单片机的区别,STM32用于工业控制的一个特点; 

GPIO端口的每个位可以由软件分别配置成多种模式:

─ 输入浮空

─ 输入上拉

─ 输入下拉

─ 模拟输入

─ 开漏输出

─ 推挽式输出

─ 推挽式复用功能

─ 开漏复用功能 

前四种是输入模式,其中前三个是数字输入,第四个是模拟输入。

下图为IO端口的基本结构:

单片机第三季-第五课:GPIO控制LED_第1张图片通过设置可将端口设置为输入或输出端口,图中上半部分为输入,下半部分为输出,输入模式是分为模拟输入以及通过TTL肖特基触发器转化为数字输入。输出模式中的P-MOS和N-MOS起到将输出增强的作用,在软件编程中重点是对图中寄存器的设置。

单片机第三季-第五课:GPIO控制LED_第2张图片

 输出模式位代表着输出端口可设置的信号输出频率。

1.1,端口配置寄存器

端口配置低寄存器(GPIOx_CRL) (x=A..E)对应端口0-7和端口配置高寄存器(GPIOx_CRH) (x=A..E)对应端口8-18。 

每个端口占四位,分别为CNFy[1:0]和MODEy[1:0],一个寄存器可以配置8个IO。

如果一个端口中的IO超过8个就需要用到配置高寄存器(GPIOx_CRH)。

单片机第三季-第五课:GPIO控制LED_第3张图片1.2,端口输入数据寄存器和端口输出数据寄存器 

端口输入数据寄存器(GPIOx_IDR) (x=A..E):

单片机第三季-第五课:GPIO控制LED_第4张图片端口输出数据寄存器(GPIOx_ODR) (x=A..E):

单片机第三季-第五课:GPIO控制LED_第5张图片1.3,端口位设置/清除寄存器 

端口位设置/清除寄存器(GPIOx_BSRR) (x=A..E):

单片机第三季-第五课:GPIO控制LED_第6张图片注:如果同时设置了BSy和BRy的对应位,BSy位起作用。也就是此时置位起作用。 

1.4,端口位清除寄存器 

端口位清除寄存器(GPIOx_BRR) (x=A..E):

单片机第三季-第五课:GPIO控制LED_第7张图片单片机第三季-第五课:GPIO控制LED_第8张图片 

其他寄存器不再一一列举,具体参考数据手册。

2,原理图分析和MDK工程

需要分析STM32核心板和转接插座的对应端口,以及通过转接插座的端口连接LED的插接口。 

选择PB8-PB15控制LED,也就是STM32的Port B。 

单片机第三季-第五课:GPIO控制LED_第9张图片

起始代码:

单片机第三季-第五课:GPIO控制LED_第10张图片单片机第三季-第五课:GPIO控制LED_第11张图片不同的CPU的起始代码一般是不同的;
起始代码是用汇编写的,一般不需要看懂,知道点就行了。 

3,写代码通过GPIO点亮LED 

第一步,寄存器信息确认,确认使用端口地址,Port B,0X4001 0C00 - 0x4001 0FFF。

单片机第三季-第五课:GPIO控制LED_第12张图片

第二步,找到Port B对应要操作的寄存器,即第一节中介绍的几个寄存器。

有可能涉及到的GPIO的寄存器地址:

寄存器名              偏移量          寄存器地址
GPIOB_CRL        0x00             0x40010C00
GPIOB_CRH       0x04             0x40010C04            
GPIOB_IDR        0x08              0x40010C08
GPIOB_ODR      0x0C             0x40010C0C            
GPIOB_BSRR    0x10             0x40010C10            
GPIOB_BRR      0x14              0x40010C14            

第三步,通过C语言编程操作寄存器。

需要注意的几点:

(1)ARM是内存与IO统一编址的,所以ARM中的所有外设都是通过寄存器的方式来操作的
(2)每个寄存器都有地址,C语言通过这些地址来操作这些寄存器位,用到的C语言技巧主要是C语言的位操作和C语言指针。
(3)常见面试题:用C语言向内存地址0x30000004写入16
    *(unsigned int *)0x30000004 = 16;                                                                                              或者:
    unsigned int *p = (unsigned int *)0x30000004;    *p = 16; 

下边的代码中直接通过操作寄存器的地址控制LED: 

#define GPIOB_CRH 0x40010C04
#define GPIOB_ODR 0x40010C0C

void main()
{
    //将 port B端口的8-15设置为输出模式,最大速度50MHz,通用推挽输出模式
    *((unsigned int *)GPIOB_CRH) = 0x3333 3333;
    
    //输出1将8个LED灯全部点亮
    *((unsigned int *)GPIOB_ODR) = 0x0000 ffff;

    while(1)

}

4,STM32时钟设置函数移植 

单片机第三季-第五课:GPIO控制LED_第13张图片

需要配置时钟的时钟控制寄存器(RCC_CR),时钟配置寄存器(RCC_CFGR)

第一步,时钟控制寄存器(RCC_CR)打开HSE ON(使用外部晶振),检测是否ready(HSE RDY)。

单片机第三季-第五课:GPIO控制LED_第14张图片

第二部,时钟配置寄存器(RCC_CFGR)配置HPRE(AHB)、PPRE1(APB1)、PPRE2(APB2)、PLLSRC、PLLXTPRE、PLLMUL。

单片机第三季-第五课:GPIO控制LED_第15张图片第三步,配置时钟控制寄存器(RCC_CR) ,PLL ON,并检测PLL RDY。

单片机第三季-第五课:GPIO控制LED_第16张图片 第四步,配置时钟配置寄存器(RCC_CFGR)中的SW,选择时钟源,并检测SWS状态。

单片机第三季-第五课:GPIO控制LED_第17张图片

时钟设置时需注意对flash相关寄存器的操作 。

另外需要注意各端口时钟的使能是独立的:

单片机第三季-第五课:GPIO控制LED_第18张图片

时钟函数代码:

头文件: 

#ifndef __CLOCK_H__
#define __CLOCK_H__

#include "gpio.h"


// 寄存器宏定义
// RCC寄存器基地址0x40021000
#define RCC_BASE	0x40021000			// RCC部分寄存器的基地址·
#define RCC_CR		(RCC_BASE + 0x00)	// RCC_CR的地址·
#define RCC_CFGR	(RCC_BASE + 0x04)

#define FLASH_ACR	0x40022000

// 用C语言来访问寄存器的宏定义
#define rRCC_CR		(*((volatile unsigned int *)RCC_CR))
#define rRCC_CFGR	(*((volatile unsigned int *)RCC_CFGR))
#define rFLASH_ACR	(*((volatile unsigned int *)FLASH_ACR))



// 时钟源切换到HSE并使能PLL,将主频设置为12MHz
void Set_SysClockTo72M(void);

#endif

源文件: 

#include "clock.h"


void Set_SysClockTo72M(void)
{
	unsigned int rccCrHserdy = 0;
	unsigned int rccCrPllrdy = 0;
	unsigned int rccCfrSwsPll = 0;
	unsigned int faultTime = 0;


	rRCC_CR = 0x00000083;
	rRCC_CR &= ~(1<<16);	  	// 关闭HSEON
	rRCC_CR |= (1<<16);			//打开HSEON,让HSEON工作

	do
	{
		rccCrHserdy = rRCC_CR & (1<<17);	//检测第17位是否为1
		faultTime++;//检测时间
	}
	while ((faultTime<0x0FFFFFFF) && (rccCrHserdy==0));

	if ((rRCC_CR & (1<<17)) != 0)
	{
		rFLASH_ACR |= 0x10;
		rFLASH_ACR &= (~0x03);
		rFLASH_ACR |= (0x02);

		// HSE ready,下面配置PLL并且等待ready
		rRCC_CFGR &= (~((0x0f<<4) | (0x07<<8) | (0x07<<11)));
		//rRCC_CFGR &= (~(0x3ff<<4));
		// AHB和APB2未分频,APB1被2分频,所以,AHB和APB2都是72MHz,APB是36MHz
		rRCC_CFGR |= ((0x0<<4) | (0x04<<8) | (0x0<<11));

		// 选择HSE作为PLL输入并且HSE不分频,所以PLL输入为8MHz
		rRCC_CFGR &= (~((1<<16) | (1<<17)));   	// 清零bit17和bit16
		rRCC_CFGR |= ((1<<16) | (0<<17));		//bit16置1

		// 设置PLL倍频系数为9
		rRCC_CFGR &= (~(0x0f<<18));   			// 清零bit18-21
		rRCC_CFGR |= (0x07<<18);				// 9倍频

		// 打开PLL开关
		rRCC_CR |= (1<<24);

		// do while 循环等待PLL时钟稳定
		faultTime = 0;
		do
		{
			rccCrPllrdy = rRCC_CR & (1<<25);	//检测25为是否为1
			faultTime++;//检测时间
		}
		while ((faultTime<0x0FFFFFFF) && (rccCrPllrdy==0));
		//while (rccCrPllrdy==0);

		if ((rRCC_CR & (1<<25)) == (1<<25))
		{
		  	// 到这里说明PLL已经稳定了,可以用了,下面就可以切了
			
			// 切换PLL输出为SYSCLK
			rRCC_CFGR &= (~(0x03<<0));   
			rRCC_CFGR |= (0x02<<0);	

			faultTime = 0;
			do
			{
				rccCfrSwsPll = rRCC_CFGR & (0x03<<2);	//检测第25位是否为1
				faultTime++;//检测时间
			}
			while ((faultTime<0x0FFFFFFF) && (rccCfrSwsPll!=(0x02<<2)));
			
		   	if ((rRCC_CFGR & (0x03<<2))== (0x02<<2))
			{
				//到这里时钟就设置好了

			}
			else
			{
				// 到这里说明PLL输出作为SYSCLK不成功
				while (1);
			}

		}
		else
		{
			// 到这里说明PLL启动时出错了,PLL不能稳定工作
			while (1);
		}

	}
	else
	{
		// HSE配置超时,说明HSE不可用,一般硬件存在问题
		while (1);
	}
}

5,STM32外设编程经验总结 

STM32和51或其他简单单片机的相同:
(1)开发环境都是Keil;
(2)都是看原理图和数据手册;
(3)都是用C语言;
STM32和51或其他简单单片机的不同:
(1)工程会更复杂,会用到Keil的一些高级设置;
(2)原理图和数据手册比简单单片机更复杂(复杂不是难);
(3)STM32会用到C语言的更多高级特性 ;

你可能感兴趣的:(单片机,单片机,嵌入式硬件)