Python----Pandas

目录

Series属性

DataFrame的属性

Pandas的CSV文件

Pandas数据处理


Pandas的主要数据结构是Series(一维数据)与DataFrame(二维数据)

Series属性

Series的属性如下:

属性 描述
pandas.Series(data,index,dtype,name,copy) Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。
data: 一组数据(ndarray 类型)
index: 数据索引标签,如果不指定,默认从 0 开始。
dtype: 数据类型,默认会自己判断。
name: 设置名称。
copy: 拷贝数据,默认为 False。

 示例1:

>>> import pandas as pd
>>> a = [1,2,3]
>>> sa = pd.Series(a)
>>> print(sa)
0    1
1    2
2    3
dtype: int64
>>> sa[1]
2
>>> a = ['Google','baidu','wiki']
>>> sa = pd.Series(a,index=['x','y','z'])
>>> print(sa)
x    Google
y     baidu
z      wiki
dtype: object

示例2:

Pandas数据类型包括

•object字符串或混合类型

•int 整型

•float浮点型

•datetime时间类型

•bool布尔型

>>> import numpy as np
>>> import pandas as pd
>>> s = pd.Series(np.random.randn(4),index=['a','b','c','d'])
>>> print(sa)
a   -1.226694
b    0.157971
c    0.022525
d    2.606825
dtype: float64
>>> s[:2] #选取前两条数据
a   -1.226694
b    0.157971
dtype: float64 
>>> s[[1,3]] # 选取第2和第4条数据
b    0.157971
d    2.606825
dtype: float64
>>> s[s>> s['a'] #通过索引值选取元素
 -1.2266936531191652
>>> s[['c','d']] # 多个索引值,注意括号
c    0.022525
d    2.606825
dtype: float64
>>> s = pd.Series(data=['1.2','1.5','2.7','2.3']) 
>>> b = s.astype('float32') # 转换类型
>>> print(b)
0    1.2
1    1.5
2    2.7
3    2.3
dtype: float32

DataFrame的属性

DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)

Python----Pandas_第1张图片

示例:

# 使用列表创建
>>> import pandas as pd
>>> data = [['Google',10],['Baidu',12],['Wiki',13]] #二维列表
>>> df = pd.DataFrame(data, columns=['site','Age'])
>>> print(df)
     site  Age
0  Google   10
1   Baidu   12
2    Wiki   13
# 使用字典创建,其中字典的key为列名
>>> data = {'Site':['Google', 'Baidu','Wiki'],'Age':[10,12,13]}
>>> pf = pd.DataFrame(data)
>>> print(pd)
     Site  Age
0  Google   10
1   Baidu   12
2    Wiki   13

•Pandas 可以使用 loc 属性返回指定行的数据,如果没有设置索引,第一行索引为 0,第二行索引为 1,以此类推:

>>> data = {'calories':[420, 380, 390],'duration':[50,40,45]}
>>> df = pd.DataFrame(data)
>>> print(df.loc[0]) # 返回第一行
calories    420
duration     50
Name: 0, dtype: int64

注意:返回结果其实就是一个 Pandas Series数据。

•可以返回多行数据,使用[[...]]格式,其中...为各行的索引,逗号隔开:

>>> data = {'calories':[420, 380, 390],'duration':[50,40,45]}
>>> df = pd.DataFrame(data)
>>> print(df.loc[[0,1]]) # 返回第一行和第二行
   calories  duration
0       420        50
1       380        40

注意:返回结果其实就是一个 Pandas DataFrame 数据。

# 查看指定列
>>> data = {'calories':[420, 380, 390],'duration':[50,40,45]}
>>> df = pd.DataFrame(data)
>>> print(df['calories']) #一列访问
0    420
1    380
2    390
Name: calories, dtype: int64
>>> print(df[['calories','duration']]) # 多列访问
   calories  duration
0       420        50
1       380        40
2       390        45
# 查看指定行和列
>>> data = {'calories':[420, 380, 390],'duration':[50,40,45]}
>>> df = pd.DataFrame(data)
>>> print(df.loc[0,'calories']) #第0行,calories数值
420
# 可以指定索引值index:
>>> data = {'calories':[420, 380, 390],'duration':[50,40,45]}
>>> df = pd.DataFrame(data, index=['day1','day2','day3'])
>>> print(df)
      calories  duration
day1       420        50
day2       380        40
day3       390        45
# 可以使用loc属性返回指定索引对应到的某一行
>>> print(df.loc['day1'])
calories    420
duration     50
Name: day1, dtype: int64

Pandas的CSV文件

CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。

import pandas as pd
df = pd.read_csv('nba.csv')
print(df.to_string())
# to_string()用于返回DataFrame类型的数据,如果不使用该函数,则输出结果
# 为数据的前面5行和末尾5行,中间部分以...代替

将DataFrame存储为CSV文件

to_csv()方法

import pandas as pd
# 三个字段 name, site, age
nme = ["Google", "Baidu", "Taobao", "Wiki"]
st = ["www.google.com", "www.baidu.com", "www.taobao.com", 
      "www.wikipedia.org"]
ag = [90, 40, 80, 98]
# 字典
dict = {'name': nme, 'site': st, 'age': ag}
df = pd.DataFrame(dict)
# 保存 dataframe
df.to_csv('site.csv')

Pandas数据处理

•使用 head(n) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行

示例1:

import pandas as pd
df = pd.read_csv('nba.csv')
print(df.head())
输出:
            Name            Team  Number  ... Weight            College     Salary
0  Avery Bradley  Boston Celtics     0.0  ...  180.0              Texas  7730337.0
1    Jae Crowder  Boston Celtics    99.0  ...  235.0          Marquette  6796117.0
2   John Holland  Boston Celtics    30.0  ...  205.0  Boston University        NaN
3    R.J. Hunter  Boston Celtics    28.0  ...  185.0      Georgia State  1148640.0
4  Jonas Jerebko  Boston Celtics     8.0  ...  231.0                NaN  5000000.0

示例2:

import pandas as pd
df = pd.read_csv('nba.csv')
print(df.head(10))
输出:
             Name            Team  Number  ... Weight            College      Salary
0  Avery Bradley  Boston Celtics     0.0  ...  180.0              Texas   7730337.0
1    Jae Crowder  Boston Celtics    99.0  ...  235.0          Marquette   6796117.0
2   John Holland  Boston Celtics    30.0  ...  205.0  Boston University         NaN
3    R.J. Hunter  Boston Celtics    28.0  ...  185.0      Georgia State   1148640.0
4  Jonas Jerebko  Boston Celtics     8.0  ...  231.0                NaN   5000000.0
5   Amir Johnson  Boston Celtics    90.0  ...  240.0                NaN  12000000.0
6  Jordan Mickey  Boston Celtics    55.0  ...  235.0                LSU   1170960.0
7   Kelly Olynyk  Boston Celtics    41.0  ...  238.0            Gonzaga   2165160.0
8   Terry Rozier  Boston Celtics    12.0  ...  190.0         Louisville   1824360.0
9   Marcus Smart  Boston Celtics    36.0  ...  220.0     Oklahoma State   3431040.0

使用 tail(n) 方法用于读取尾部的 n 行,如果不填参数 n ,默认返回 5 行,空行各个字段的值返回 NaN。

示例1:

import pandas as pd
df = pd.read_csv('nba.csv')
print(df.tail())
输出:
              Name       Team  Number Position  ...  Height Weight  College     Salary
453  Shelvin Mack  Utah Jazz     8.0       PG  ...     6-3  203.0   Butler  2433333.0
454     Raul Neto  Utah Jazz    25.0       PG  ...     6-1  179.0      NaN   900000.0
455  Tibor Pleiss  Utah Jazz    21.0        C  ...     7-3  256.0      NaN  2900000.0
456   Jeff Withey  Utah Jazz    24.0        C  ...     7-0  231.0   Kansas   947276.0
457           NaN        NaN     NaN      NaN  ...     NaN    NaN      NaN        NaN

示例2:

import pandas as pd
df = pd.read_csv('nba.csv')
print(df.tail(10))
输出:
               Name       Team  Number  ... Weight   College      Salary
448  Gordon Hayward  Utah Jazz    20.0  ...  226.0    Butler  15409570.0
449     Rodney Hood  Utah Jazz     5.0  ...  206.0      Duke   1348440.0
450      Joe Ingles  Utah Jazz     2.0  ...  226.0       NaN   2050000.0
451   Chris Johnson  Utah Jazz    23.0  ...  206.0    Dayton    981348.0
452      Trey Lyles  Utah Jazz    41.0  ...  234.0  Kentucky   2239800.0
453    Shelvin Mack  Utah Jazz     8.0  ...  203.0    Butler   2433333.0
454       Raul Neto  Utah Jazz    25.0  ...  179.0       NaN    900000.0
455    Tibor Pleiss  Utah Jazz    21.0  ...  256.0       NaN   2900000.0
456     Jeff Withey  Utah Jazz    24.0  ...  231.0    Kansas    947276.0
457             NaN        NaN     NaN  ...    NaN       NaN         NaN

•info() 方法返回表格的一些基本信息(索引、数据类型和内存信息)

示例1:

import pandas as pd
df = pd.read_csv('nba.csv')
print(df.info())

RangeIndex: 458 entries, 0 to 457 #行数,458,行,第一行编号为0

Data columns (total 9 columns): #列数,9

 #   Column    Non-Null Count  Dtype  #各列的数据类型

---  ------    --------------  ----- 

 0   Name      457 non-null    object  #non-null,意思是非空的数

 1   Team      457 non-null    object

 2   Number    457 non-null    float64

 3   Position  457 non-null    object

 4   Age       457 non-null    float64

 5   Height    457 non-null    object

 6   Weight    457 non-null    float64

 7   College   373 non-null    object #college的空值最多

 8   Salary    446 non-null    float64

dtypes: float64(4), object(5)

memory usage: 32.3+ KB

 示例2:

import pandas as pd
df = pd.read_csv('nba.csv')
a = df.sort_values(by='Weight') # 按Weight列数据升序排列
print(a.head().to_string())
输出:
           Name                  Team  Number Position   Age Height  Weight                College     Salary
152      Aaron Brooks         Chicago Bulls     0.0       PG  31.0    6-0   161.0                 Oregon  2250000.0
350     Briante Weber            Miami Heat    12.0       PG  23.0    6-2   165.0  Virginia Commonwealth        NaN
263      Bryce Cotton     Memphis Grizzlies     8.0       PG  23.0    6-1   165.0             Providence   700902.0
359  Brandon Jennings         Orlando Magic    55.0       PG  26.0    6-1   169.0                    NaN  8344497.0
286       Tim Frazier  New Orleans Pelicans     2.0       PG  25.0    6-1   170.0             Penn State   845059.0

print(a[a.Weight > 200].head().to_string()) # Weight列大于200的
输出:
                   Name                  Team  Number Position   Age Height  Weight       College     Salary
47        Isaiah Canaan    Philadelphia 76ers     0.0       PG  25.0    6-0   201.0  Murray State   947276.0
309       Kent Bazemore         Atlanta Hawks    24.0       SF  26.0    6-5   201.0  Old Dominion  2000000.0
226       Rashad Vaughn       Milwaukee Bucks    20.0       SG  19.0    6-6   202.0          UNLV  1733040.0
453        Shelvin Mack             Utah Jazz     8.0       PG  26.0    6-3   203.0        Butler  2433333.0
282  Bryce Dejean-Jones  New Orleans Pelicans    31.0       SG  23.0    6-6   203.0    Iowa State   169883.0 

示例3:

import pandas as pd
df = pd.read_csv('nba.csv')
df['one'] = 1 #增加一个固定值的列
print(df.head().to_string())
输出:
    Name            Team        Number Position   Age Height  Weight            College     Salary  one
0  Avery Bradley  Boston Celtics     0.0       PG  25.0    6-2   180.0              Texas  7730337.0    1
1    Jae Crowder  Boston Celtics    99.0       SF  25.0    6-6   235.0          Marquette  6796117.0    1
2   John Holland  Boston Celtics    30.0       SG  27.0    6-5   205.0  Boston University        NaN    1
3    R.J. Hunter  Boston Celtics    28.0       SG  22.0    6-5   185.0      Georgia State  1148640.0    1
4  Jonas Jerebko  Boston Celtics     8.0       PF  29.0   6-10   231.0                NaN  5000000.0    1

print(a[a.Weight > 200].head().to_string()) # Weight列大于200的
输出:
                   Name                  Team  Number Position   Age Height  Weight       College     Salary
47        Isaiah Canaan    Philadelphia 76ers     0.0       PG  25.0    6-0   201.0  Murray State   947276.0
309       Kent Bazemore         Atlanta Hawks    24.0       SF  26.0    6-5   201.0  Old Dominion  2000000.0
226       Rashad Vaughn       Milwaukee Bucks    20.0       SG  19.0    6-6   202.0          UNLV  1733040.0
453        Shelvin Mack             Utah Jazz     8.0       PG  26.0    6-3   203.0        Butler  2433333.0
282  Bryce Dejean-Jones  New Orleans Pelicans    31.0       SG  23.0    6-6   203.0    Iowa State   169883.0 

•drop()方法:通过指定标签名称和响应的轴,或者直接指定索引或列名称,删除行或列

属性 描述

pandas.DataFrame.drop(labels=None, axis=0,index=None,columns=None,

level=None,inplace=False,errors=’raise’)

通过指定标签名称和相应的轴,或直接指定索引或列名称,删除行或列。
labels 单个标签或者标签列表
axis=0 默认 删除index; axis=1 指定删除列
inplace=True 修改原数据
level 针对多重索引 指定级别
index 指定索引
columns 指定列名

示例:

>>>import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.arange(12).reshape(3,4),columns=['a','b','c','d'])
输出:
   a  b   c   d
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11
#删除行
>>> df.drop(2)
   a  b  c  d
0  0  1  2  3
1  4  5  6  7
>>> df.drop([0,1])
   a  b   c   d
2  8  9  10  11

>>>import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.arange(12).reshape(3,4),columns=['a','b','c','d'])
输出:
# 删除列
>>> df.drop('a', axis=1)
   b   c   d
0  1   2   3
1  5   6   7
2  9  10  11
>>> df.drop(['b','c'], axis=1)
   a   d
0  0   3
1  4   7
2  8  11
>>> df.drop(columns=['b','c']) # 同上
   a   d
0  0   3
1  4   7
2  8  11

你可能感兴趣的:(python,pandas,开发语言)