差异表达基因检测 | EBSeq

写在前面

要帮朋友做RNA-seq的分析,cases vs. controls总共4个样本(2 vs. 2),看到文献(实验设计比较类似)里用的是EBSeq较为频繁,所以用这个来做。
但从文献来看,EBSeq对样本量依赖较大。

EBSeq

  • TPR relatively independent of sample size and presence of outliers.
  • Poor FDR control in most situations, relatively unaffected by outliers.
  • Medium computational time requirement, increases slightly with sample size.

EBSeq的输入数据是原始的read count,可以通过featureCounts、HTSeq-count等软件包获得。

命令参考链接 http://www.bioconductor.org/packages/release/bioc/html/EBSeq.html

安装

数据不算大,PC应该够用了,所以在window下安装。EBSeq依赖的安装包blockmodeling一直无法成功安装,隔了两天再看,才想到要去仔细看报错文件,发现其中有特殊字符无法识别,索性直接改了,就能直接加载啦。

source("http://bioconductor.org/biocLite.R")
biocLite("EBSeq")
require(EBSeq)

载入需要的程辑包:blockmodeling
Error: package or namespace load failed for ‘blockmodeling’:
 attachNamespace()里算'blockmodeling'时.onAttach失败了,详细内容:
  调用: parse(con)
  错误: 16:28: 意外的INCOMPLETE_STRING
15:         journal = "Social Networks",
16:         author = as.person("Ale
                               ^
错误: 无法载入程辑包‘blockmodeling’
In addition: Warning message:
In parse(con) :
  invalid input found on input connection 'C:/Users/cc/Documents/R/win-library/3.5/blockmodeling/CITATION'

library(blockmodeling)
#出现同样的报错

修改文件'C:/Users/cc/Documents/R/win-library/3.5/blockmodeling/CITATION'的内容,其中对应报错的行有Aleš Žiberna——带帽子的字符,删掉或者改成别的常见字符就OK了。当然如果担心以后出类似问题,改起来琐碎,可以直接设置R的识别语言。
Note:搜索时使用关键词INCOMPLETE_STRING,而非最后的invalid input found on input connection。搜索方向决定了解决问题的效率。

library(EBSeq)
载入需要的程辑包:gplots
载入程辑包:‘gplots’
The following object is masked from ‘package:stats’:
    lowess
载入需要的程辑包:testthat

实战

Example

#example
data(GeneMat)
head(GeneMat)
#[,1] [,2] [,3] [,4] [,5] [,6] [,7]  [,8] [,9] [,10]
#Gene_1 1879 2734 2369 2636 2188 9743 9932 10099 9829  9831
#Gene_2   24   40   22   27   31  118  108   144  117   113

Sizes=MedianNorm(GeneMat) #EBSeq requires the library size factor ls for each sample s. Here, ls may be obtained via the function MedianNorm, which reproduces the median normalization approach in DESeq

Conditions=as.factor(rep(c("C1","C2"),each=5)) #设置样本类型
Conditions
#[1] C1 C1 C1 C1 C1 C2 C2 C2 C2 C2
#Levels: C1 C2

EBOut = EBTest(GeneMat,Conditions=as.factor(rep(c("C1","C2"),each=5)),sizeFactors=Sizes, maxround=5)
EBDERes=GetDEResults(EBOut, FDR=0.05)
summary(EBDERes)

str(EBDERes$DEfound) #a list of genes identified with 5% FDR
head(EBDERes$PPMat) # two columns PPEE and PPDE, corresponding to the posterior probabilities of being EE or DE for each gene
str(EBDERes$Status) #EBDERes$Status contains each gene’s status called by EBSeq

实例

paste KD_In1.count  KD_In2.count EGFP_In1.count EGFP_In2.count  |awk '{print $1"\t"$2"\t"$4"\t"$6"\t"$8}'|sort -k 1  >combined.count
head combined.count
tail combined.count
sed -i '1,2d'combined.count  #删除1-2行
sed -i '53800,$d'  combined.count  #删除53800-last 行
sed -i '1igene\tKD1\tKD2\tEGFP1\tEGFP2' combined.count   #增加首行

data=read.table("combined.count",header=T,row.names=1)
head(data)
#                EGFP1 EGFP2 KD1 KD2
#ENSMUSG00000000001 281 243   295   233
#ENSMUSG00000000003   0   0     0     0
#ENSMUSG00000000028  20  25    25    12

data=as.matrix(data)

#pre-filtering 这里仅保留了readcounts总和>=10的基因
keep <- rowSums(data[,1:4])>=10
data <- data[keep,]

#跑出结果
require(EBSeq)
Sizes=MedianNorm(data)
EBOut = EBTest(data,Conditions=as.factor(rep(c("EGFP","KD"),each=2)),sizeFactors=Sizes, maxround=15)  #maxround迭代次数,一般要求最后结果趋于收敛比较可信

EBDERes=GetDEResults(EBOut, FDR=0.05)
summary(EBDERes)

str(EBDERes$DEfound) #a list of genes identified with 5% FDR
head(EBDERes$PPMat) # two columns PPEE and PPDE, corresponding to the posterior probabilities of being EE or DE for each gene
#                        PPEE         PPDE
#ENSMUSG00000000001 1.0000000 3.203313e-17
#ENSMUSG00000000003        NA           NA

str(EBDERes$Status) #EBDERes$Status contains each gene’s status called by EBSeq

#输出DEG(FDR<0.05)
write.table(EBDERes$DEfound,file="DEG_FDR005.txt",quote=F,sep="\t",row.names=F,col.names=F)

#计算 Fold Change (FC) of the raw data as well as the posterior FC of the normalized data.
GeneFC=PostFC(EBOut)
str(GeneFC)
PlotPostVsRawFC(EBOut,GeneFC)  #FC vs.Posterior FC的图
write.table(GeneFC,file="FC.txt",quote=F,sep="\t")  #注意$Direction
  • 如何确定maxround?
    查看参数值:EBOut$Alpha, EBOut$P, EBOut$Beta,最后两个值相差<0.01就差不多了。

关于差异表达(RNA-seq)

标准化方法不同+检验不同=多种组合/软件,用之前需要结合自己的样本量来考虑,多参考有相似实验设计的文献,常用的方法都跑一下,自己评估下结果差异,再做定夺。(研究本来就是充满了不确定性,一切都只能用“可能性”来定义,所以,采用同样参数仍然无法完全重复出文献中的结果也是常见。即使你心有芥蒂...)

针对配合meRIP-seq的RNA-seq,因为朋友需要看了几篇文献,基本都是2 vs. 2的样本量,文献里的作法也有差异。

  • 直接取了fold change >2 (2017Cancer Cell-m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program)
  • EBSeq (2017Cancer Cell-FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA Demethylase)
  • DESeq2

你可能感兴趣的:(差异表达基因检测 | EBSeq)