- 如何分析用户满意度?这4种常用满意度分析模型,一定要学会
spssau
说到问卷调查,满意度调查算是众多问卷调查类型中应用最广泛的。不论是大小企业,或是政府、机构都可以通过满意度问卷调查了解服务对象的满意程度。比如医院需要了解患者对医护人员服务的满意程度,企业需要了解顾客对自家产品的满意程度及需求,政府需要了解公众的的服务需求等等。本文将介绍4种常用的顾客满意度模型,以及如何使用SPSSAU进行这些模型的建立和分析。1、四分图四分图,又称为四象限图,是一种简单实用的满
- 【Statsmodels和SciPy介绍与常用方法】
机器学习司猫白
scipystatsmodels统计
Statsmodels库介绍与常用方法Statsmodels是一个强大的Python库,专注于统计建模和数据分析,广泛应用于经济学、金融、生物统计等领域。它提供了丰富的统计模型、假设检验和数据探索工具,适合进行回归分析、时间序列分析等任务。本文将介绍Statsmodels的核心功能,并通过代码示例展示其常用方法。Statsmodels简介Statsmodels建立在NumPy和SciPy的基础上,
- Boostrap方法的理解及应用
Xiaofei@IDO
统计学概率论机器学习数据挖掘
1、Boostrap介绍1.1概念性解释Boostrap统计学方法是一种非参数检验方法,用于估计各种统计量的置信区间。Boostrap计算步骤简单的描述为:通过有放回的数据集的重采样,产生一系列的待检验统计量的Boostrap经验分布。基于该分布,计算标准误差,构建置信区间,并对多种类型的样本进行统计信息和假设检验。Boostrap统计学方法使用范围比较广,因为它不需要假定数据服从特定的理论分布(
- Python Day56
别勉.
python机器学习python开发语言
Task:1.假设检验基础知识a.原假设与备择假设b.P值、统计量、显著水平、置信区间2.白噪声a.白噪声的定义b.自相关性检验:ACF检验和Ljung-Box检验c.偏自相关性检验:PACF检验3.平稳性a.平稳性的定义b.单位根检验4.季节性检验a.ACF检验b.序列分解:趋势+季节性+残差记忆口诀:p越小,落在置信区间外,越拒绝原假设。1.假设检验基础知识a.原假设与备择假设原假设(Null
- SPSS配对t检验,配对样本的相关系数和对应的显著性该怎么理解呢?
cda2024
算法
在数据分析的世界里,SPSS是一个强大的工具,它可以帮助我们更好地理解和解释数据。今天我们要聊的是一个非常实用但又容易让人困惑的话题——SPSS配对t检验中的配对样本相关系数及其显著性该如何理解?想象一下,你是一名CDA(CertifiedDataAnalyst)持证人,正在为一家公司分析员工的绩效提升情况。公司实施了一项新的培训计划,并希望了解这项培训是否有效。为了评估培训效果,你需要比较员工在
- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- 程序员转向人工智能
CoderIsArt
机器学习与深度学习人工智能
以下是针对程序员转向人工智能(AI)领域的学习路线建议,分为基础、核心技术和进阶方向,结合你的编程背景进行优化:1.夯实基础数学基础(选择性补足,边学边用)线性代数:矩阵运算、特征值、张量(深度学习基础)概率与统计:贝叶斯定理、分布、假设检验微积分:梯度、导数(优化算法核心)优化算法:梯度下降、随机梯度下降(SGD)学习资源:3Blue1Brown(视频)、《程序员的数学》系列编程工具Python
- 假设检验:统计推断的决策艺术
Algo-hx
概率论与数理统计概率论
目录引言8假设检验8.1假设检验的基本原理8.1.1核心概念框架8.1.2假设形式8.2检验的两类错误8.2.1错误类型矩阵8.2.2错误概率关系8.3单正态总体参数检验8.3.1均值μ的检验8.3.2方差σ²的检验8.4双正态总体参数检验8.4.1均值差检验8.4.2方差比检验8.5P值:检验的客观度量8.5.1P值定义8.5.2决策规则8.5.3P值解读引言假设检验是统计学的’审判法庭’——通
- 没有统计学基础,如何才能学好SPSS和SAS?
cda2024
学习python数据分析
在当今数据驱动的时代,掌握数据分析工具如SPSS和SAS已经成为许多职场人士的必备技能。然而,很多初学者常常会问:“我没有统计学基础,如何才能学好SPSS和SAS?”这确实是一个值得探讨的问题。本文将从多个角度为你解答这个问题,并提供一些实用的学习建议。一、理解SPSS和SAS的定位首先,让我们来了解一下SPSS和SAS这两个工具的定位和功能。SPSS(StatisticalPackagefort
- P值、置信度与置信区间的关系:统计推断的三大支柱
进一步有进一步的欢喜
p值置信度置信区间统计学显著性水平
目录引言一、P值是什么?——假设检验的“证据强度”1.1定义1.2判断标准:显著性水平α\alphaα(阿尔法)1.3示例说明二、置信区间与置信度:参数估计的“不确定性范围”2.1置信区间的定义2.2置信度的含义三、显著性水平α\alphaα与置信度1−α1-\alpha1−α的互补关系3.1数学上的互补关系3.2实际意义四、P值vs置信区间:本质不同但逻辑相通五、P值与置信区间的数学联系5.1举
- 机器学习的数学基础:假设检验
爱数学的小理
数学机器学习的数学基础数学建模机器学习数学
假设检验默认以错误率为性能度量,错误率由下式给出:E(f,D)=∫x∼DII(f(x)≠y)p(x)dxE(f,\mathcal{D})=\int_{\boldsymbol{x}\sim\mathcal{D}}\mathbb{II}(f(\boldsymbol{x})\ney)p(\boldsymbol{x})\text{d}\boldsymbol{x}E(f,D)=∫x∼DII(f(x)=y)
- 北斗导航 | 接收机自主完好性监测算法如何与机器学习,深度学习等结合,提高故障星检测识别精度
单北斗SLAMer
卫星导航机器学习深度学习算法
将机器学习(ML)和深度学习(DL)与接收机自主完好性监测(RAIM)算法相结合,是提高卫星导航系统(如GPS、北斗、Galileo等)故障检测与识别精度的重要前沿方向。传统RAIM主要基于几何分布和统计假设检验(如最小二乘残差法、奇偶矢量法),在复杂环境(城市峡谷、强多径、低可见星数)或新型故障(缓慢偏移、间歇性故障)下存在局限性。ML/DL能有效弥补这些不足,提升检测性能。以下是主要的结合方式
- 数据分析中假设检验_假设检验数据科学
weixin_26705651
python数据分析大数据人工智能java
数据分析中假设检验UsingInferentialStatistics,welearnedhowtoanalyzethesampledataandmakeinferencesaboutthepopulationmeanandotherpopulationdata.However,wecouldnotconfirmtheconclusionswemadeaboutthepopulationdata.
- 美区电商商家境内邮寄怎么获取USPS可SCF折扣单
北***扣
大数据
以下是美区电商商家获取USPS可验资SCF折扣单的完整流程与策略:一、核心获取渠道亚马逊平台内置服务在卖家后台注册BuyShippingAPI,勾选USPSSCF服务条款,系统自动匹配平台提供的专属折扣(首重低至$0.8/单)。配置发货偏好时选择“USPSSmallPackageService”,匹配轻小件标准(重量1-10磅,尺寸≤1立方英尺)。第三方物流管理系统通过USPS2280
- graphpad prism显著性差异分析_「SPSS数据分析」SPSS差异分析(4)配对样本T检验的操作步骤...
weixin_39740283
graphpadprism显著性差异分析spss非线性回归分析步骤
上期我们详细讲解了独立样本T检验在SPSS中的详细操作和输出结果的解读:《SPSS差异分析(3)独立样本T检验的操作步骤及结果解读》独立样本T检验适用于两个完全独立的样本,之间没有任何相互关联,例如男性和女性;本科和专科等等。在实际研究中,有时候会遇到存在相互有关联的两组样本:例如某个指标干预前和干预后的两组值,此类样本属于自身配对样本;又例如2只特性完全一样的小鼠(性别,体重,身长等都一致),然
- 折线图标注显著性差异分析_「SPSS数据分析」SPSS非参数假设检验(3)单样本K-S检验...
冯爽妹
折线图标注显著性差异分析
单样本K-S检验是一种针对单个变量的数据分布进行的探索类别的检验方法。它不需要将数据分组,直接对原始数据的n个观测值进行检验,单样本K-S检验主要用于连续型数据。其中可检验分布类别有正态分布、平均分布、泊松分布、指数分布等。通常用到最多的就是检验是否服从正常性分布。下面,我们通过实际案例来详细讲解单样本K-S检验数据是否符合正态分布。我们搜集了472例减肥前体重数据,检验该数据整体上是否服从正态性
- Dunn’s test和Bonferroni校正的spss界面操作
一只土卜皿
spssspss
好的,用户现在问的是Dunn’stest和Bonferroni校正的SPSS界面操作。首先,我需要确认用户的需求。他们可能是在进行多重比较,比如在Kruskal-Wallis检验之后需要成对比较,而Dunn’stest正是用于这种情况的非参数方法。Bonferroni校正是用来控制多重比较的误差,避免假阳性结果。接下来,用户可能已经完成了Kruskal-Wallis检验,得到了显著的结果,现在需要
- 小样本百分比的统计检验
一只土卜皿
spssspss学习
当样本量小于40且需要比较占比(比例)的统计学差异时,需根据具体场景选择适当的方法。以下是针对小样本量的推荐方法和操作步骤:1.核心方法选择(1)两组占比比较(如A组20%vsB组40%)Fisher精确检验(Fisher’sExactTest)适用条件:样本量<40,或任一格期望频数<5。适用于2×2列联表(如两组+二分类结局)。SPSS操作:Analyze→DescriptiveStatist
- 2021年认证杯SPSSPRO杯数学建模B题(第二阶段)依巴谷星表中的毕星团求解全过程文档及程序
数模竞赛Paid answer
数学建模认证杯数据分析数学建模认证杯数学建模数据分析
2021年认证杯SPSSPRO杯数学建模B题依巴谷星表中的毕星团原题再现: 依巴谷卫星(HighPrecisionParallaxCollectingSatellite,缩写为Hip-parcos),全称为“依巴谷高精度视差测量卫星”,是欧洲空间局发射的一颗天体测量卫星,用以精确测量恒星的视差和自行。通过视差可以推断出恒星距地球的距离。 毕星团位于金牛座,是离地球最近的疏散星团。其成员星在30
- 决策树 连续变量_决策树在spss中的实现
DataStax
决策树连续变量
问题:spss关于决策树方法有哪些?回答:在SPSS中,关于决策树的方法介绍了四种,分别是CHAID、穷举CHAID、CRT、QUEST这四种。CHAID,就是卡方自动交互检验。顾名思义就是以卡方检验为判定准则。该方法要求解释变量和被解释变量都是分类变量,如果有连续变量,系统会将连续变量转化为分类变量;穷举CHAID,就是穷举卡方自动交互检验,是CHAID方法的“改进升级版”。CHAID在进行树的
- 【图像处理基石】如何入门AI计算机视觉?
AndrewHZ
图像处理基石人工智能图像处理计算机视觉深度学习AIPyTorch
入门AI计算机视觉需要从基础理论、工具方法和实战项目三个维度逐步推进,以下是系统化的学习路径和建议:一、夯实基础:核心知识储备1.数学基础(必备)线性代数:矩阵运算、特征值分解、奇异值分解(SVD)——理解神经网络中的线性变换。概率论与统计:概率分布、贝叶斯定理、假设检验——支撑模型训练中的不确定性分析。微积分:导数、梯度、链式法则——深度学习优化(如反向传播)的核心。推荐资源:教材:《线性代数及
- 26版SPSS操作教程(高级教程第一章)
Continue(延续)
大数据数据分析概率论
前言#经过20多天的坚持学习,本人也终于开启SPSS高级教程的副本了,茫茫长征路,需要我们一起共同去征服;#由于导师最近布置了学习SPSS这款软件的任务,因此想来平台和大家一起交流下学习经验,这期推送内容接上一次初级教程最后一期推送的学习笔记,希望能得到一些指正和帮助~粉丝及官方意见说明#针对官方爸爸的意见说的推送缺乏操作过程的数据案例文件澄清如下:1、操作演示的数据全部由我本人随意假设输进去的,
- 3.5 统计初步
x峰峰
#数学概率论考研
本章系统阐述统计推断理论基础,涵盖大数定律、抽样分布、参数估计与假设检验等核心内容。以下从六个核心考点系统梳理知识体系:考点一:大数定律与中心极限定理1.大数定律切比雪夫不等式:设随机变量XXX的数学期望E(X)=μE(X)=\muE(X)=μ,方差D(X)=σ2D(X)=\sigma^2D(X)=σ2,则对任意ε>0\varepsilon>0ε>0:P{∣X−μ∣≥ε}≤σ2ε2P\{|X-\m
- R语言学习--Day01--数据清洗初了解andR的经典筛选语法
Chef_Chen
学习
当我们在拿到一份数据时,是否遇到过想要分析数据却无从下手?通过编程语言去利用它时发现有很多报错不是来源于代码而是因为数据里有很多脏数据;在这个时候,如果你会用R语言来对数据进行清洗,这会让你的效率提升很多。R语言的典型使用场景统计分析执行假设检验(t检验、卡方检验)、回归分析、方差分析等优势:内置stats包提供100+统计函数,如lm(),aov()数据可视化绘制统计图表(散点图、箱线图、热力图
- 正态分布习题集 · 题目篇
aichitang2024
概率论习题集概率论
正态分布习题集·题目篇全面覆盖单变量正态、多变量正态、参数估计、假设检验、变换以及应用,共20题,从基础到进阶。完成后请移步《答案与解析篇》。1.基础定义与性质(5题)1.1密度函数写出正态分布N(μ,σ2)N(\mu,\sigma^2)N(μ,σ2)的概率密度函数(PDF),解释参数含义。1.2标准正态变换给定X∼N(μ,σ2)X\simN(\mu,\sigma^2)X∼N(μ,σ2),写出将X
- 二项分布习题集 · 题目篇
aichitang2024
概率论习题集概率论
二项分布习题集·题目篇共18题,覆盖二项分布的定义、性质、参数估计、区间估计、假设检验、极限近似以及工程应用与编程仿真。完成后请移步《答案与解析篇》。1.基础概念(4题)1.1定义写出二项分布Bin(n,p)\mathrm{Bin}(n,p)Bin(n,p)的概率质量函数(PMF),说明n,pn,pn,p的含义。1.2伯努利关系用一句话说明二项分布与伯努利分布的关系,并给出数学表达式。1.3期望方
- 统计学-什么是一类错误和二类错误?
阿桨
数据分析知识问答数据分析
在统计学中,一类错误(TypeIerror)和二类错误(TypeIIerror)是与假设检验相关的两种错误类型。一类错误是指在实际上原假设为真的情况下,拒绝了原假设的错误。换句话说,我们错误地认为存在效应或差异,而实际上并不存在。一类错误通常被表示为α(alpha),即显著性水平。常见的显著性水平是0.05,表示我们接受5%的风险来犯一类错误。二类错误是指在实际上备择假设为真的情况下,接受了原假设
- 书籍-《顺序变化检测和假设检验》
深度学习计算机视觉人工智能
书籍:SequentialChangeDetectionandHypothesisTesting作者:AlexanderTartakovsky出版:ChapmanandHall/CRC编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《顺序变化检测和假设检验》01书籍介绍顺序变化检测和假设检验的统计方法广泛应用于多个领域,如质量控制、生物医学工程、通信网络、计量经济学、图像处理和安全等。本书提供
- 集中趋势描述
不解风情的老妖怪哎
CDA数据分析备考学习笔记数据分析
一、集中趋势的定义与核心目标集中趋势指数据向其中心值聚集的倾向,反映数据的典型水平或分布中心。其核心是通过统计指标(如众数、中位数、均值)概括数据的核心特征,帮助快速理解数据分布的核心位置。核心作用:简化复杂数据、指导业务决策(如确定用户平均消费水平)、支持模型假设检验(如正态分布验证)。二、数据类型与对应的集中趋势指标1.分类数据(名义尺度)(1)适用指标:众数(Mode)①定义:出现频次最高的
- 从质检到实验:Python三大T检验实战案例
梦想画家
数据分析工程人工智能#pythonpythonT检验
本文深入探讨统计学中的T检验技术,结合饮料质检、药物疗效验证和用户行为分析三大真实业务场景,详解Python中Scipy和Statsmodels库的实践方法。通过完整代码演示和结果解读,帮助从业者快速掌握数据驱动决策的核心技能。T检验方法体系概述T检验(Student’st-test)是基于小样本均值差异的假设检验方法,在以下场景表现优异:总体标准差未知时(现实中的常见情况)样本量介于3-30之间
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交