【算法思考记录】力扣2952. 需要添加的硬币的最小数量【Python3,思路挖掘,贪心与证明】

原题链接

文章目录

  • 需要添加的硬币的最小数量:贪心算法实现
    • 题目概述
      • 示例分析
    • 关键思路分析
      • 贪心算法的优化选择证明
      • 案例推演与算法实现
    • Python 实现
    • 结论

需要添加的硬币的最小数量:贪心算法实现

题目概述

在这个困难难度的算法题中,我们要解决的问题是确定在给定一系列硬币面值的情况下,为了使[1, target]区间内的每个整数都可以由这些硬币的某种组合表示出来,需要向数组中添加的最小数量的硬币。

示例分析

  • 示例 1:
    • 输入: coins = [1,4,10], target = 19
    • 输出: 2 (需要添加面值2和8的硬币)
  • 示例 2:
    • 输入: coins = [1,4,10,5,7,19], target = 19
    • 输出: 1 (仅需要添加面值为2的硬币)
  • 示例 3:
    • 输入: coins = [1,1,1], target = 20
    • 输出: 3 (需要添加面值为4、8和16的硬币)

关键思路分析

解决问题的关键在于贪心算法的应用。核心思想是对于每个无法直接凑出的金额x,添加面值为x的硬币以达到最优效果。通过这种方法,我们可以逐步构建出一个能够覆盖[1, target]区间的硬币集合。

贪心算法的优化选择证明

我们可以根据这个案例抽象出普遍性做法。如果要靠添加硬币的方式,才能凑出金额x,如果此时已经能凑出[1, s]的金额(x = s + 1),我们应该选择添加面值x,以得到更优结果。

证明:

选择1. 如果添加小于x的面值:
比如说添加面值small,此时面值small与金额x - small也可以凑出金额x。增加了面值small后,[small + 1, small + 2, small + 3…small + s]这些金额都可以通过与前面的金额相加凑出,不妨想象一个区间[small + 1, small + s],因为x - small是位于[1, s]之中的(x = s + 1,且small至少为1,因此x - small至少为x - 1 = s),所以现在可以凑出x了,还可以凑出[x, small + s]中的金额,结合原来的[1, s],我们可以凑出[1, small + s]的金额。

选择2. 添加面值x:
增加了面值x后,[x + 1, x + 2, x + 3…x + s]这些金额都可以通过与前面的金额相加凑出,因此可以结合前面的区间凑出[1, x + s]

选择3. 添加大于x的面值:
如果添加面值x + 1,原先能凑出的区间为[1, s],因为x = s + 1,x + 1 = s + 2,此时依然无法凑出金额x,因为区间没有覆盖到x这个点上,因此这个方案无效

综合以上3个选择,我们可以比对[1, small + s]和[1, x + s],因为small < x,所以毫无疑问选择x是最优做法。

案例推演与算法实现

从最基础的情况出发,假设最初无法凑出金额1。此时,我们添加面值为1的硬币。接着,对于每个接下来的金额x,如果当前硬币组合无法凑出x,我们则添加面值为x的硬币,从而扩展可凑金额的范围。这个过程一直持续到可以凑出target为止。

Python 实现

实现中,首先对硬币进行排序,然后遍历每个硬币,同时维护一个变量x表示当前考虑的金额,以及一个变量s表示目前可以凑出的最大金额。若当前硬币面值大于x,则添加面值为x的硬币,直到可以凑出当前考虑的硬币面值为止。这个过程一直重复,直到可以凑出目标金额target

class Solution:
    def minimumAddedCoins(self, coins: List[int], target: int) -> int:
        coins.sort()
        ans = 0
        x = 1
        s = 0
        for c in coins:
            if c > x:
                while c > x:
                    s = s + x
                    ans += 1
                    x = s + 1
            s = s + c
            x = s + 1

        if s < target:
            while target > s:
                s = s + x
                ans += 1
                x = s + 1

        return ans

结论

通过贪心算法的应用,我们可以有效地解决这个算法问题,确保在给定硬币面值的情况下,以最小的硬币数量覆盖[1, target]的所有整数。

你可能感兴趣的:(算法,leetcode,职场和发展,python)