函数渐近线练习,定义法求解

题目描述

求函数 f ( x ) = 4 2 − x 2 f(x) = \frac{4}{2-x^2} f(x)=2x24 的图形的渐近线

求解

lim ⁡ x → ∞ 4 2 − x 2 = 0 \lim\limits_{x\to\infty}{\frac{4}{2-x^2}} = 0 xlim2x24=0

证: ∀ ε > 0 \forall \varepsilon > 0 ε>0,
要使 ∣ 4 2 − x 2 ∣ < ε | \frac{4}{2-x^2} | < \varepsilon 2x24<ε, 需要 4 ε < ∣ 2 − x 2 ∣ \frac{4}{\varepsilon} < |2-x^2| ε4<∣2x2

\quad 1.1 子问题: 证: lim ⁡ x → ∞ 2 − x 2 \lim\limits_{x\to\infty}{2-x^2} xlim2x2 极限不存在

\quad ∀ M > 0 \forall M > 0 M>0,
\quad 要使 ∣ 2 − x 2 ∣ > M | 2-x^2 | > M ∣2x2>M,
\quad 只要 ∣ 2 − x 2 ∣ ⩾ x 2 − 2 > M | 2-x^2 | \geqslant x^2 - 2 > M ∣2x2x22>M, 即: ∣ x ∣ > M + 2 |x|> \sqrt{M+2} x>M+2
\quad X = M + 2 X = \sqrt{M+2} X=M+2 , 当 ∣ x ∣ > X |x| > X x>X 时, 有: ∣ 2 − x 2 ∣ > M | 2-x^2 | > M ∣2x2>M
\quad lim ⁡ x → ∞ 2 − x 2 \lim\limits_{x\to\infty}{2-x^2} xlim2x2 极限不存在.

可得当 ∣ x ∣ > 4 ε + 2 |x|>\sqrt{\frac{4}{\varepsilon}+2} x>ε4+2 时,有: 4 ε < ∣ 2 − x 2 ∣ \frac{4}{\varepsilon} < |2-x^2| ε4<∣2x2, 即: ∣ 4 2 − x 2 ∣ < ε | \frac{4}{2-x^2} | < \varepsilon 2x24<ε
得: lim ⁡ x → ∞ 4 2 − x 2 = 0 \lim\limits_{x\to\infty}{\frac{4}{2-x^2}} = 0 xlim2x24=0

因此, y = 0 y=0 y=0 f ( x ) f(x) f(x) 的水平渐近线。


lim ⁡ x → 2 4 2 − x 2 = ∞ \lim\limits_{x\to\sqrt{2}}{\frac{4}{2-x^2}} = \infty x2 lim2x24=( ∞ \infty 表示极限不存在)

证: ∀ M > 0 \forall M > 0 M>0,
要使 ∣ 4 2 − x 2 ∣ > M | \frac{4}{2-x^2} | > M 2x24>M, 需要 4 M > ∣ 2 − x 2 ∣ \frac{4}{M} > |2-x^2| M4>∣2x2

\quad 1.2 子问题,证: lim ⁡ x → 2 2 − x 2 = 0 \lim\limits_{x\to\sqrt{2}}{2-x^2} = 0 x2 lim2x2=0

\quad ∀ ε > 0 \forall \varepsilon > 0 ε>0
\quad 要使 ∣ 2 − x 2 ∣ < ε | 2-x^2 | < \varepsilon ∣2x2<ε,

函数渐近线练习,定义法求解_第1张图片

\quad ε \varepsilon ε 的取值情况和 ∣ 2 − x 2 ∣ | 2-x^2 | ∣2x2 图像.

\quad 1 ◯ \textcircled{1} 1 0 < ε < = 2 0 < \varepsilon <= 2 0<ε<=2 0 < x < 2 0 < x < \sqrt{2} 0<x<2 时:

\quad\quad ∣ 2 − x 2 ∣ = 2 − x 2 |2-x^2| = 2 - x^2 ∣2x2=2x2
\quad\quad 联立 y = ε y = \varepsilon y=ε y = 2 − x 2 y = 2 - x^2 y=2x2
\quad\quad x = 2 − ε x = \sqrt{2 - \varepsilon} \quad x=2ε ( x > 0 x > 0 x>0, 舍去负号)
\quad\quad 可取 δ 1 = 2 − 2 − ε \delta_1 = \sqrt{2} - \sqrt{2 - \varepsilon} δ1=2 2ε
\quad\quad 2 − δ 1 < x < 2 \sqrt{2} - \delta_1 < x < \sqrt{2} 2 δ1<x<2 时,有: ∣ 2 − x 2 ∣ < ε |2 - x^2| < \varepsilon ∣2x2<ε
\quad\quad lim ⁡ x → 2 − 2 − x 2 = 0 \lim\limits_{x \to \sqrt{2}^-}2-x^2 = 0 x2 lim2x2=0

\quad 2 ◯ \textcircled{2} 2 ε > 2 \varepsilon > 2 ε>2 0 < x < 2 0 < x < \sqrt{2} 0<x<2 时:

\quad\quad ∀ δ 2 ∈ ( 0 , 2 ) \forall \delta_2 \in (0, \sqrt{2}) δ2(0,2 )
\quad\quad 2 − δ 2 < x < 2 \sqrt{2} - \delta_2 < x < \sqrt{2} 2 δ2<x<2 时,有: ∣ 2 − x 2 ∣ < ε |2 - x^2| < \varepsilon ∣2x2<ε
\quad\quad lim ⁡ x → 2 − 2 − x 2 = 0 \lim\limits_{x \to \sqrt{2}^-}2-x^2 = 0 x2 lim2x2=0

\quad\quad 综上, lim ⁡ x → 2 − 2 − x 2 = 0 \lim\limits_{x \to \sqrt{2}^-}2-x^2 = 0 x2 lim2x2=0

\quad 3 ◯ \textcircled{3} 3 x > 2 x > \sqrt{2} x>2 时:

\quad\quad 要使 ∣ 2 − x 2 ∣ = x 2 − 2 < ε |2 - x^2| = x^2 - 2 < \varepsilon ∣2x2=x22<ε
\quad\quad 只需 2 < x < 2 + ( ε + 2 − 2 ) \sqrt{2} < x < \sqrt{2} + (\sqrt{\varepsilon + 2} - \sqrt{2}) 2 <x<2 +(ε+2 2 )
\quad\quad 可取 δ 3 = ε + 2 − 2 \delta_3 = \sqrt{\varepsilon + 2} - \sqrt{2} δ3=ε+2 2
\quad\quad 2 < x < 2 + δ 3 \sqrt{2} < x < \sqrt{2} + \delta_3 2 <x<2 +δ3 时,有: ∣ 2 − x 2 ∣ < ε |2 - x^2| < \varepsilon ∣2x2<ε
\quad\quad lim ⁡ x → 2 + 2 − x 2 = 0 \lim\limits_{x \to \sqrt{2}^+}2-x^2 = 0 x2 +lim2x2=0

\quad 由上得: lim ⁡ x → 2 + 2 − x 2 = lim ⁡ x → 2 − 2 − x 2 = 0 \lim\limits_{x \to \sqrt{2}^+}2-x^2 = \lim\limits_{x \to \sqrt{2}^-}2-x^2 = 0 x2 +lim2x2=x2 lim2x2=0
\quad 故: lim ⁡ x → 2 2 − x 2 = 0 \lim\limits_{x\to\sqrt{2}}{2-x^2} = 0 x2 lim2x2=0
\quad 函数 g ( x ) = 2 − x 2 g(x) = 2 - x^2 g(x)=2x2 是当 x → 2 x \to \sqrt{2} x2 时的无穷小。

2 − x 2 2 - x^2 2x2 是当 x → 2 x \to \sqrt{2} x2 时的无穷小,
∀ ε 1 = 4 M > 0 \forall \varepsilon_1 = \frac{4}{M} > 0 ε1=M4>0, ∃ δ > 0 \exist \delta > 0 δ>0, 当 0 < ∣ x − 2 ∣ < δ |x - \sqrt{2}| < \delta x2 <δ 时,
∣ 2 − x 2 ∣ < ε 1 = 4 M |2 - x^2| < \varepsilon_1 = \frac{4}{M} ∣2x2<ε1=M4, 即: ∣ 4 2 − x 2 ∣ > M | \frac{4}{2-x^2} | > M 2x24>M
得: lim ⁡ x → 2 4 2 − x 2 = ∞ \lim\limits_{x\to\sqrt{2}}{\frac{4}{2-x^2}} = \infty x2 lim2x24=

f ( x ) = 4 2 − x 2 f(x) = \frac{4}{2-x^2} f(x)=2x24 为偶函数,同理可得: lim ⁡ x → − 2 4 2 − x 2 = ∞ \lim\limits_{x\to -\sqrt{2}}{\frac{4}{2-x^2}} = \infty x2 lim2x24=

因此, x = − 2 x = -\sqrt{2} x=2 x = 2 x = \sqrt{2} x=2 f ( x ) f(x) f(x) 的两条铅直渐近线。

你可能感兴趣的:(高数,学习)