plot函数
(1)基本用法:plot(x,y)
其中,x,y为坐标。
x=[2.5,3.5,4,5];
y=[1.5,2.0,1,1.5];
plot(x,y)
(2)plot最简单的调用格式
plot(x)
x=[1.5,2,1,1.5];
plot(x)
当plot函数的参数x是复数向量时,则分别以该向量元素实部和虚部为横、纵坐标绘制出一条曲线。
x=[2.5,3.5,4,5];
y=[1.5,2.0,1,1.5];
(3)plot(x,y)函数参数的变化形式
当x是向量,y是矩阵时
eg:绘制sinx、sin(2x)、sin(0.5x)的函数曲线。
x=linspace(0,2pi,100); #产生0到2pi之间的行向量,100个元素
y=[sin(x);sin(2x);sin(0.5*x)];
plot(x,y)
当x、y是同型矩阵时
以x,y对应列元素为横,纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
如上例:
t=0:0.01:2pi;
t1=t’;
x=[t1,t1,t1]; #这里的x是个矩阵
y=[sin(t1),sin(2t1),sin(0.5*t1)];
plot(x,y)
(4)含多个输入参数的plot函数
plot(x1,y1,x2,y2,……,xn,yn)
其中,每一向量对构成一组数据点的横纵坐标,绘制一条曲线。
eg:采用不同个数的数据点绘制正弦函数曲线,观察曲线形态。
t1=linspace(0,2pi,10);
t2=linspace(0,2pi,20);
t3=linspace(0,2*pi,100);
plot(t1,sin(t1),t2,sin(t2)+1,t3,sin(t3)+2)
(5)含选项的plot函数
plot(x,y,选项)
线形:
颜色:
数据点标记:
eg:用不同线形和颜色在同一座标内绘制曲线y=2e-0.5xsin(2pix)及其包络线。
x=[0:pi/50:2pi]’;
y1=2exp(-0.5x)[-1,1]; #包络线
y2=2exp(-0.5x).sin(2pix);
x1=0:0.5:6;
y3=2exp(-0.5x1).sin(2pix1); 乘0等于0
plot(x,y1,‘k-’,x,y2,‘g–’,x1,y3,‘r*’)
fplot函数
eg:采用fplot绘制sin(1/x)
如果用plot:
(2)双输入函数参数的用法
fplot(funx,funy,tlims,选项)
fplot(@(t) t.*sin(t),@(t) t.cos(t),[0,10pi],‘r’)
给图形添加标注
(1)title函数
title(图形标题)
eg:绘制[-2pi,2pi]的正弦函数曲线并给图形添加标题
x=-2pi:0.05:2pi;
y=sin(x);
plot(x,y)
title({‘MATLAB’,‘y=sin(x)’})
(2)xlabel和ylabel函数
xlabel(x轴说明)ylabel(y轴说明)
x=-2pi:0.05:2pi;
y=sin(x);
plot(x,y)
title(‘y=sin(x)’)
xlabel(’-2\pi \leq x \leq 2\pi’)
(3)text和gtext函数
text(x,y,说明) gtext(说明)
x=-2pi:0.05:2pi;
y=sin(x);
plot(x,y)
text(-2*pi,0,’-2\pi’)
text(3,0.4,’\leftarrow sin(x)’)
(4)legend函数
legend(图例1,图例2,……)
eg:绘制不同频率的正弦曲线并用图例标注曲线。
x=[0:2pi/100:2pi]’;
y=[sin(x),sin(2x),sin(3x)];
plot(x,y)
legend(‘sin(x)’,‘sin(2x)’,‘sin(3x)’)
坐标控制
(1)axis函数
axis([xmin,xmax,ymin,ymax,zmin,zmax])
二维图像只用到四个参数
eg:
x=[0,1,1,0,0];
y=[0,0,1,1,0];
plot(x,y)
axis([-0.1,1.1,-0.1,1.1])
axis equal;
(2)给坐标系加网格和边框
网格:
边框:(没出现默认有)
eg:绘制sinx,sin(2x),sin(x/2)的函数曲线并添加图形标注
x=linspace(0,2pi,100);
y=[sin(x);sin(2x);sin(0.5x)];
plot(x,y)
axis([0,7,-1.2,1.2])
title(‘不同频率的正弦函数曲线’);
xlabel(‘Variable X’);ylabel(‘Variable Y’);
text(2.5,sin(2.5),‘sinx’);
text(1.5,sin(21.5),‘sin(2x)’);
text(5.5,sin(0.5*5.5),‘sin(0.5x)’);
legend(‘sinx’,‘sin(2x)’,‘sin(0.5x)’);
grid on
图形保持
在原有图形上继续画图
eg:用图形保持功能绘制两个同心圆。
t=linspace(0,2pi,100);
x=sin(t);y=cos(t);
plot(x,y,‘r:’)
hold on;
plot(2x,2*y,‘b’)
grid on;
axis([-3,3,-3,3]);
axis equal
图形窗口的分割
1.子图:同一图形窗口中的不同坐标系下的图形称为子图
2.subplot(m,n,p)
其中,m,n指定将图形窗口分成m*n个绘图区,p指定当前的活动区
eg:
subplot(2,2,1); #分成22个子图,都在第一个图操作
x=linspace(0,2pi,100);
y=sin(x);
plot(x,y)
title(‘y=sinx’);
axis([0,2*pi,-1,1]);
eg:
x=linspace(0,2pi,100);
subplot(2,2,1);
plot(x,sin(x)-1);
title(‘y=sinx-1’);axis([0,2pi,-2,1]);
subplot(2,1,2);
plot(x,cos(x)+1)
title(‘y=cosx+1’);axis([0,2*pi,0,2]);
subplot(4,4,3);
plot(x,tan(x))
title(‘y=tanx’);axis([-pi,pi,-5,5]);
subplot(4,4,8);
plot(x,cot(x))
title(‘y=cotx’);axis([-5,5,-pi,pi]);
其他坐标系下的二维曲线:
(1)对数坐标图
semilogx(x1,y1,选项1,x2,y2,选项2……)
semilogy(x1,y1,选项1,x2,y2,选项2……)
loglog(x1,y1,选项1,x2,y2,选项2……)
eg1:绘制 1 x \frac{1}{x} x1的直角线形坐标图和三种对数坐标图。
x=1:0.1:10;
y=1./x;
subplot(2,2,1);
plot(x,y)
title('plot(x,y)');
subplot(2,2,2);
semilogx(x,y)
title('semilogx(x,y)');grid on
subplot(2,2,3);
semilogy(x,y)
title('semilogy(x,y)');grid on
subplot(2,2,4);
loglog(x,y)
title('loglog(x,y)');grid on
(2)极坐标图
polar(theta,rho,选项)
eg:按极坐标方程ρ=1-sinθ绘制心形曲线
t=0:pi/100:2*pi;
r=1-sin(t);
polar(t,r)
①条形图:
eg:绘制分组条形图
y=[1 2 3 4 5;1 2 1 2 1;5 4 3 2 1];
subplot(1,2,1)
bar(y)
title('Group')
subplot(1,2,2)
bar(y,'stacked')
title('Stacked')
x=[2015 ,2016,2017];
y=[68 80 115 98 102;75 88 102 99 110;81 86 125 105 115];
bar(x,y)
title('2015-2017年家电类商品1月份销售数据(单位:万台)');grid on
legend('冰箱','空调','洗衣机','电视机','油烟机')
eg:绘制服从高斯分布的直方图。
y=randn(500,1); # 函数randn:产生均值为0,方差 σ^2 = 1,标准差σ = 1的正态分布的随机数或矩阵的函数。此处是500*1矩阵
subplot(2,1,1);
hist(y);
title('高斯分布直方图');
subplot(2,1,2)
x=-3:0.2:3;
hist(y,x);
title('指定区间中心点的直方图')
y=randn(500,1);
theta=y*pi; #由于theta以弧度为单位,所以转换成弧度
rose(theta)
title('在极坐标下的直方图')
①扇形图
pie函数:pie(x,explode) x存储待统计数据,选项explode控制图块的显示模式
eg:某次考试优秀、良好、中等、及格、不及格的人数分别为:5 17 23 9 4,用扇形统计图作成绩统计分析
x=[5 17 23 9 4];
ex=[0 0 0 0 1]; #1表示突出显示第五块区域
pie(x,ex)
legend('优秀','良好','中等','及格','不及格','location','eastoutside')
# location设置图例位置,放在东侧图形外面
②面积图
area函数
(3)散点类图形
t=0:pi/100:2*pi;
x=16*sin(t).^3;
y=13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t);
scatter(x,y,'rd','filled') #rd:红色棱形
矢量类图形
quiver(x,y,u,v) 其中,(x,y)指定矢量起点,(u,v)指定矢量终点
eg:已知向量A,B,求A+B,并用矢量图表示
A=[4,5];B=[-8,0];C=A+B;
hold on;
quiver(0,0,A(1),A(2));
quiver(0,0,B(1),B(2));
quiver(0,0,C(1),C(2));
text(A(1),A(2),'A');text(B(1),B(2),'B');text(C(1),C(2),'C');
axis([-10,6,-1,6]);
grid on