OpenJudge 2979 陪审团的人选 / Poj 1015 Jury Compromise

1.链接地址:

http://bailian.openjudge.cn/practice/2979

http://poj.org/problem?id=1015

2.题目:

总Time Limit:
1000ms
Memory Limit:
65536kB
Description
在遥远的国家佛罗布尼亚,嫌犯是否有罪,须由陪审团决定。陪审团是由法官从公众中挑选的。先随机挑选n个人作为陪审团的候选人,然后再从这n个人中选m人组成陪审团。选m人的办法是:

控 方和辩方会根据对候选人的喜欢程度,给所有候选人打分,分值从0到20。为了公平起见,法官选出陪审团的原则是:选出的m个人,必须满足辩方总分和控方总 分的差的绝对值最小。如果有多种选择方案的辩方总分和控方总分的之差的绝对值相同,那么选辩控双方总分之和最大的方案即可。
Input
输入包含多组数据。每组数据的第一行是两个整数n和m,n是候选人数目,m是陪审团人数。注意,1<=n<=200, 1<=m<=20 而且 m<=n。接下来的n行,每行表示一个候选人的信息,它包含2个整数,先后是控方和辩方对该候选人的打分。候选人按出现的先后从1开始编号。两组有 效数据之间以空行分隔。最后一组数据n=m=0
Output
对每组数据,先输出一行,表示答案所属的组号,如 'Jury #1', 'Jury #2', 等。接下来的一行要象例子那样输出陪审团的控方总分和辩方总分。再下来一行要以升序输出陪审团里每个成员的编号,两个成员编号之间用空格分隔。每组输出数据须以一个空行结束。
Sample Input
4 2 

1 2 

2 3 

4 1 

6 2 

0 0 
Sample Output
Jury #1 

Best jury has value 6 for prosecution and value 4 for defence: 

 2 3 
Source
Southwestern European Regional Contest 1996, POJ 1015, 程序设计实习2007

3.思路:

这题自己没想到思路,参照了《程序设计导引及在线实践》的思路

动态规划题目,使用深度搜索的话会超时

4.代码:

  1 #include <iostream>

  2 #include <cstdio>

  3 #include <cstdlib>

  4 #include <cstring>

  5 

  6 using namespace std;

  7 

  8 const int maxDiff = 400;

  9 

 10 int cmp(const void* a,const void *b)

 11 {

 12     int int_a = *((int *)a);

 13     int int_b = *((int *)b);

 14 

 15     return int_a - int_b;

 16 }

 17 

 18 int main()

 19 {

 20     //freopen("C://input.txt","r",stdin);

 21 

 22     int i,j,k;

 23     int temp;

 24     int temp_path,temp_diff;

 25 

 26     int n,m;

 27     cin >> n >> m;

 28 

 29     int count = 1;

 30     while(n != 0 || m != 0)

 31     {

 32         int *arr_sum = new int[n];

 33         int *arr_diff = new int[n];

 34 

 35         bool *arr_used = new bool[n];

 36         memset(arr_used,0,sizeof(bool) * n);

 37 

 38         int int_a,int_b;

 39         for(i = 0; i < n; ++i)

 40         {

 41             cin >> int_a >> int_b;

 42             arr_sum[i] = int_a + int_b;

 43             arr_diff[i] = int_a - int_b;

 44         }

 45 

 46         int **dp = new int*[m];

 47         for(i = 0; i < m; ++i)

 48         {

 49             dp[i] = new int[maxDiff * 2 + 1];

 50             for(j = 0; j <= maxDiff * 2; ++j) dp[i][j] = -1;

 51         }

 52 

 53         int **path = new int*[m];

 54         for(i = 0; i < m; ++i) path[i] = new int[maxDiff * 2 + 1];

 55 

 56         for(i = 0; i < n; ++i)

 57         {

 58             temp = arr_diff[i] + maxDiff;

 59             if(dp[0][temp] < arr_sum[i])

 60             {

 61                 dp[0][temp] = arr_sum[i];

 62                 path[0][temp] = i;

 63             }

 64 

 65             //cout << "dp[0][" << temp << "]="  << dp[0][temp] << "path[0][" << temp << "]=" << path[0][temp] << endl;

 66         }

 67 

 68 

 69         for(i = 1; i < m; ++i)

 70         {

 71             for(j = 0; j <= maxDiff * 2; ++j)

 72             {

 73                 if(dp[i - 1][j] != -1)

 74                 {

 75 

 76                     temp_diff = j;

 77                     for(k = i - 1; k >= 0; --k)

 78                     {

 79                         temp_path = path[k][temp_diff];

 80                         arr_used[temp_path] = true;

 81                         temp_diff = temp_diff - arr_diff[temp_path];

 82                     }

 83 

 84                     for(k = 0; k < n; ++k)

 85                     {

 86                         if(!arr_used[k])

 87                         {

 88                             temp = j + arr_diff[k];

 89                             if(dp[i][temp] == -1 || (dp[i][temp] < dp[i - 1][j] + arr_sum[k]))

 90                             {

 91                                 dp[i][temp] = dp[i - 1][j] + arr_sum[k];

 92                                 path[i][temp] = k;

 93                             }

 94                         }

 95                     }

 96 

 97 

 98                     temp_diff = j;

 99                     for(k = i - 1; k >= 0; --k)

100                     {

101                         temp_path = path[k][temp_diff];

102                         arr_used[temp_path] = false;

103                         temp_diff = temp_diff - arr_diff[temp_path];

104                     }

105                 }

106             }

107 

108         }

109 

110         int res_idx;

111         for(i = 0; i <= maxDiff; ++i)

112         {

113             if(dp[m - 1][maxDiff - i] != -1 || dp[m - 1][maxDiff + i] != -1)

114             {

115                 if(dp[m - 1][maxDiff - i] == -1) res_idx = i;

116                 else if(dp[m - 1][maxDiff + i] == -1) res_idx = - i;

117                 else

118                 {

119                     res_idx = (dp[m - 1][maxDiff + i] > dp[m - 1][maxDiff - i] ? i : (-i));

120                 }

121                 break;

122             }

123         }

124 

125         cout << "Jury #" << count++ << endl;

126         cout << "Best jury has value " << (dp[m - 1][res_idx + maxDiff] + res_idx) / 2<< " for prosecution and value " << (dp[m - 1][res_idx + maxDiff] - res_idx) / 2<< " for defence:" << endl;

127 

128         temp_diff = res_idx + maxDiff;

129         int *arr_res = new int[m];

130         for(i = m - 1; i >= 0; --i)

131         {

132             temp_path = path[i][temp_diff];

133             arr_res[i] = temp_path + 1;

134             temp_diff = temp_diff - arr_diff[temp_path];

135         }

136         qsort(arr_res,m,sizeof(int),cmp);

137 

138         for(i = 0; i < m; ++i) cout << " " << arr_res[i];

139         cout << endl;

140 

141         delete [] arr_res;

142 

143         cout << endl;

144 

145         delete [] arr_sum;

146         delete [] arr_diff;

147         

148         for(i = 0; i < m; ++i) delete [] dp[i];

149         delete [] dp;

150 

151 

152 

153         for(i = 0; i < m; ++i) delete [] path[i];

154         delete [] path;

155 

156         cin >> n >> m;

157     }

158 

159     return 0;

160 }

 

你可能感兴趣的:(Promise)